K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

a. ĐKXĐ: 

\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)

b. ĐKXĐ:

\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

 

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

31 tháng 10 2017

ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)

ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)

a) Ta thấy theo điều kiện  \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)

Ta thấy theo điều kiện   \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)

\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)

Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.

31 tháng 10 2017

Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ. 

Giải:

\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)

\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)

a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)

Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)

Với \(x\ge1\)ta có:

\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)

Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)

b, *\(\sqrt{x}+\sqrt{x+1}=1\)

Điều kiện: \(x\ge0\)

Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)

Suy ra: \(x=0\)

*\(\sqrt{x+4}+\sqrt{x-1}=2\)

Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)

Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)

5 tháng 6 2018

ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)

<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

5 tháng 6 2018

\(x\ge\frac{1}{2}\)

2 tháng 12 2019

Có đặt cái nick name mak mất dạy VC

a

Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\frac{1}{x-1}\ge0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c

Để \(\sqrt{x^2+1}\) xác định thì \(x^2+1\ge0\) ( điều này luôn đúng )

Vậy \(\sqrt{x^2+1}\) xác định với mọi x

5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3