Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
Đặt \(\frac{5x+5}{2x^2+2x}=A\)
a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)
TXĐ:\(x\ne0;x\ne-1\)
b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)
Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Rightarrow x=\frac{2}{5}\)( TM )
\(\frac{4x-1}{5x^2+x}=\frac{4x-1}{x\left(5x+1\right)}\)
phân số \(\frac{4x-1}{x\left(5x+1\right)}\)dược xác định với điều kiện \(\hept{\begin{cases}x\ne0\\5x+1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)
vậy \(ĐKXĐ\)của phân thức là \(\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)
A=x3/x2--4.x+2/x-x-4xx-4/xx-2
Điều kiện x \(\ne\)+-2
Ý b c tự làm
a) ĐKXĐ:
x2-10x khác 0 và x2+10x khác 0
=>x.(x-10) khác 0 và x.(x+1) khác 0
=>x khác 0 và x khác 10 ;-10
b)\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x^2-10x}.\frac{x^2-100}{x^2+4}+\frac{5x-2}{x^2+10x}.\frac{x^2-100}{x^2+4}\)
\(=\frac{5x+2}{x.\left(x-10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}+\frac{5x-2}{x.\left(x+10\right)}.\frac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)
\(=\frac{\left(5x+2\right).\left(x+10\right)}{x.\left(x^2+4\right)}+\frac{\left(5x-2\right).\left(x-10\right)}{x.\left(x^2+4\right)}\)
\(=\frac{5x^2+52x+20+5x^2-52x+20}{x.\left(x^2+4\right)}=\frac{10x^2+40}{x.\left(x^2+4\right)}=\frac{10.\left(x^2+4\right)}{x.\left(x^2+4\right)}=\frac{10}{x}\)
Để A=20040 thì:
10/x=20040
=>x=1/2004
Để phân thức xác định \(\Leftrightarrow x^2-5x+4\ne0\)
<=> x2 - x - 4x + 4 \(\ne\)0
<=> x( x - 1) - 4( x - 1) \(\ne\)0
<=> ( x- 4)( x - 1)\(\ne\)0
=>\(x\ne4,x\ne1\)