\(\frac{4x-1}{5x^2+x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

ĐKXĐ: x khác 0 và x khác \(\frac{-1}{5}\)

7 tháng 11 2017

\(\frac{4x-1}{5x^2+x}=\frac{4x-1}{x\left(5x+1\right)}\)

phân số \(\frac{4x-1}{x\left(5x+1\right)}\)dược xác định với điều kiện  \(\hept{\begin{cases}x\ne0\\5x+1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)

vậy  \(ĐKXĐ\)của phân thức là  \(\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)

25 tháng 1 2017

Để phân thức xác định \(\Leftrightarrow x^2-5x+4\ne0\)

                                   <=> x2 - x - 4x + 4 \(\ne\)0

                                  <=> x( x - 1) - 4( x - 1) \(\ne\)0

                                  <=> ( x- 4)( x - 1)\(\ne\)0

=>\(x\ne4,x\ne1\)

A=x3/x2--4.x+2/x-x-4xx-4/xx-2

Điều kiện x \(\ne\)+-2

Ý b c tự làm 

9 tháng 12 2017

\(A=\frac{x^3}{x^2-4}.\frac{x+2}{x}-\frac{4x-4}{x-2}\)   \(ĐKXĐ:x\ne0;x\ne2\)

\(A=\frac{x^2}{x-2}-\frac{4\left(x-1\right)}{x-2}\)

\(A=\frac{x^2-4x+4}{x-2}\)

\(A=\frac{\left(x-2\right)^2}{x-2}\)

\(A=x-2\)

vậy \(A=x-2\)

21 tháng 2 2020

ai giúp mình vớiiiii

21 tháng 2 2020

a, ĐKXĐ:

9x^2 - 16 ≠ 0

=> (3x - 4)(3x + 4) ≠ 0

=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0

=> 3x  ≠ 4 và 3x ≠ -4

=> x ≠ 4/3 hoặc x ≠ -4/3

b, ĐKXĐ:

x^2 - 5x + 6 ≠ 0

=> x^2 - 2x - 3x + 6 ≠ 0

=> x(x - 2) - 3(x - 2) ≠ 0

=> (x - 3)(x - 2) ≠ 0

=> x - 3 ≠ 0 và x - 2 ≠ 0

=> x ≠ 3 và x ≠ 2

c, ĐKXĐ : 

x^2 - 4x + 4 ≠ 0

=> (x - 2)^2 ≠ 0

=> x - 2 ≠ 0

=> x ≠ 2

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

1 tháng 4 2020

a) \(P=\frac{4x^3+8x^2+x-2}{4x^2+4x+1}=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)

ĐKXĐ :\(\left(2x+1\right)^2\ne0=>2x+1\ne0=>x\ne-\frac{1}{2}\)

b) \(P=\frac{3}{2}\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}=\frac{3}{2}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{2x+1}=\frac{3}{2}\Leftrightarrow4x^2-2x+8x-4=6x+3\)

\(\Rightarrow4x^2=7=>x^2=\frac{7}{4}=>x=\pm\sqrt{\frac{7}{4}}\)

c) \(P=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{\left(x+2\right)\left(2x+1-2\right)}{2x+1}=\frac{\left(x+2\right)\left(2x+1\right)-2\left(x+2\right)}{2x+1}\)

\(=x+2-\frac{2x+2}{2x+1}=x+2-1-\frac{1}{2x+1}\)

để P nguyền khi zà chỉ khi

\(1⋮2x+1\)

\(=>2x+1\inƯ\left(1\right)=\pm1\)

=>\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

29 tháng 3 2020

\(\text{Đk:}x\ne-\frac{1}{2}\Rightarrow P=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(4x^2-1\right)\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(2x-1\right)\left(x+2\right)}{2x+1}\)

\(=\frac{2x^2+4x-x-2}{2x+1}=\frac{3}{2}\Rightarrow2x^2+3x-2=3x+\frac{3}{2}\Leftrightarrow2x^2-\frac{7}{2}=0......\)

\(P\text{ nguyên }\Rightarrow2x^2+3x-2⋮2x+1\Leftrightarrow2x^2+3x-2-\left(x+1\right)\left(2x+1\right)⋮2x+1\Leftrightarrow-3⋮2x+1....\)

4 tháng 1 2019

\(x\ne\pm2\)

4 tháng 1 2019

Để phân thức xác định

\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

\(\Rightarrow x\ne\pm2\)

Chúc bạn học tốt!!!

7 tháng 12 2018

a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+1\right)\ne0\)

\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

b) Để phân thức bằng 1 thì :

\(5x+5=2x^2+2x\)

\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow5=2x\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy.......

7 tháng 12 2018

Phân thức xác định

\(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+2\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định

30 tháng 4 2017

 a)  ĐKXĐ của phương trình : \(4x^2+4x+1\ne0\)\(\Rightarrow x\ne-\frac{1}{2}\)

b)  \(P=\frac{4x^3+8x^2-x-2}{4x^2+4x+1}\)

\(\Rightarrow P=\frac{\left(4x^3-x\right)+\left(8x^2-2\right)}{\left(2x+1\right)^2}\)

 \(\Rightarrow P=\frac{x\left(4x^2-1\right)+2\left(4x^2-1\right)}{\left(2x+1\right)^2}\)

\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)

\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{3}{2}\)\(\Rightarrow P\left(x\right)=2\left(x+2\right)\left(2x-1\right)=3\left(2x+1\right)\)

\(\Rightarrow P\left(x\right)=4x^2+6x-6-\left(6x+3\right)=0\)

 \(\Rightarrow P\left(x\right)=4x^2-9=0\)\(\Rightarrow P\left(x\right)=x^2=\frac{9}{4}\)

\(\Rightarrow P\left(x\right)=x^2=\sqrt{\frac{9}{4}}\)\(\Rightarrow P\left(x\right)=\frac{3}{2}\)

câu c)  cx tương tự 

30 tháng 4 2017

a, x khác -1/2

b, x=\(\frac{\sqrt{7}}{2}\)