Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm xác định trên R khi với mọi x ta có:
\(sin^6x+cos^6x+m.sinx.cosx>0\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x+\dfrac{m}{2}sin2x>0\)
\(\Leftrightarrow3sin^22x-2m.sin2x-4< 0\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow3t^2-2mt-4< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.f\left(-1\right)< 0\\3.f\left(1\right)< 0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\-2m-1< 0\end{matrix}\right.\)
\(\Rightarrow-\dfrac{1}{2}< m< \dfrac{1}{2}\)
ĐKXĐ: 2m-3sinx>=0
=>3sin x<=2m
=>sin x<=2m/3
mà -1<=sin x<=1
nên -1<=2m/3<=1
=>-3<=2m<=3
=>-3/2<=m<=3/2
a, Vì \(-5sinx\ge-5\Rightarrow m-5sinx\ge0\forall x\Leftrightarrow m\ge5\)
b, Vì \(cos2x\ge-1\Rightarrow2m+cos2x\ge0\forall x\Leftrightarrow2m\ge1\Leftrightarrow m\ge\dfrac{1}{2}\)
c, TH1: \(m=0\) thỏa mãn yêu cầu bài toán
TH2: \(m>0\)
Khi đó: \(-m+1\le mcosx+1\le m+1\)
Yêu cầu bài toán thỏa mãn khi \(-m+1>0\Leftrightarrow m< 1\)
\(\Rightarrow0< m< 1\)
TH3: \(m< 0\)
Khi đó: \(m+1\le mcosx+1\le-m+1\)
Yêu cầu bài toán thỏa mãn khi \(m+1>0\Leftrightarrow m>-1\)
\(\Rightarrow-1< m< 0\)
Vậy \(m\in\left(-1;1\right)\)
Hàm xác định trên R khi và chỉ khi:
\(8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m\ge0;\forall x\) (1)
Đặt \(3sinx-4cosx=t\)
\(\Rightarrow t^2=\left(3sinx-4cosx\right)^2\le\left(3^2+\left(-4\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le t\le5\)
(1) tương đương:
\(-2t-t^2-2m\ge0;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le-t^2-2t;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le\min\limits_{t\in\left[-5;5\right]}\left(-t^2-2t\right)\)
Xét hàm \(f\left(t\right)=-t^2-2t\) trên \(\left[-5;5\right]\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-5\right)=-15\) ; \(f\left(-1\right)=1\) ; \(f\left(5\right)=-35\)
\(\Rightarrow2m\le-35\Rightarrow m\le-\dfrac{35}{2}\)
a.
\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge max\left(cosx\right)\)
\(\Leftrightarrow m\ge1\)
b.
\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)
\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)
\(\Leftrightarrow m\le-2\)
c.
\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
1.
Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
để hàm số xác định với mọi x thuộc R thì
\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)
mà \(2cos^2x-cosx+4>0\) nên :
\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)
vậy điều kiện của m là : \(m\ge\frac{3}{7}\)
Dạng này lâu quá quên cách làm rồi, thử vài cách xem cái nào tối ưu:
Sử dụng tam thức bậc 2:
Hàm xác định trên R khi:
\(2sin^2x-m.sinx+1>0;\forall x\in R\)
Đặt \(sinx=t\in\left[-1;1\right]\)
\(\Rightarrow f\left(t\right)=2t^2-m.t+1>0;\forall t\in\left[-1;1\right]\)
\(\Delta=m^2-8\)
TH1: \(\Delta< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)
Khi đó \(f\left(t\right)>0;\forall t\in R\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}=\dfrac{m}{4}\notin\left[-1;1\right]\end{matrix}\right.\) \(\Rightarrow\) ko có m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\t_1< t_2< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(-1\right)=m+3>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
TH4: \(\left\{{}\begin{matrix}\Delta>0\\1< t_1< t_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(1\right)=3-m>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Vậy \(-2\sqrt{2}< m< 2\sqrt{2}\)
- Sử dụng hẳng đẳng thức:
\(2sin^2x-m.sinx+1>0\)
\(\Leftrightarrow16sin^2x-8m.sinx+8>0\)
\(\Leftrightarrow\left(4sinx-m\right)^2-m^2+8>0\)
\(\Leftrightarrow\left(4sinx-m\right)^2>m^2-8\) (1)
TH1: \(m^2-8< 0\Rightarrow\) BPT luôn đúng
TH2: \(m^2-8\ge0\), khi đó (1) tương đương:
\(\left[{}\begin{matrix}4sinx-m>\sqrt{m^2-8}\\4sinx-m< -\sqrt{m^2-8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4sinx>m+\sqrt{m^2-8}\\4sinx< m-\sqrt{m^2-8}\end{matrix}\right.\)
Do \(sinx\in\left[-1;1\right]\) nên điều này đúng vói mọi x khi và chỉ khi:
\(\left[{}\begin{matrix}-4>m+\sqrt{m^2-8}\\4< m-\sqrt{m^2-8}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-1>\dfrac{m+\sqrt{m^2-8}}{4}\\1< \dfrac{m-\sqrt{m^2-8}}{4}\end{matrix}\right.\)(2)
Giải 2 cái này ra là được.
À, đến đây phát hiện ra 1 điều, thực chất \(\dfrac{m\pm\sqrt{m^2-8}}{4}\) chính là 2 nghiệm \(t_1;t_2\) của pt
\(2t^2-mt+1=0\), và 2 BPT (2) kia cũng chính là \(\left[{}\begin{matrix}t_1< t_2< -1\\1< t_1< t_2\end{matrix}\right.\) của cách 1
Vậy về cơ bản 2 cách này giống nhau về phần lõi, chỉ khác về cách trình bày
Hàm xác định trên R khi với mọi x ta có:
\(2sin3x+2cos3x-m>0\)
\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)
\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)
\(\Rightarrow m< -2\sqrt{2}\)