Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
a/ \(cos^2x-cosx=0\Rightarrow cosx\left(cosx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}\)
b/ \(cos2x+sinx=0\Leftrightarrow cos2x=sin\left(-x\right)\)
\(\Leftrightarrow cos2x=cos\left(x+\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{\pi}{2}+k2\pi\\2x=-x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{6}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{7\pi}{6};\frac{11\pi}{6}\right\}\)
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Đặt \(sinx=t\Rightarrow-1\le t\le1\)
Pt trở thành: \(2t^2-t-m+3=0\)
\(\Leftrightarrow2t^2-t+3=m\)
Xét \(f\left(t\right)=2t^2-t+3\) trên \(\left[-1;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\in\left[-1;1\right]\) ; \(f\left(-1\right)=6\) ; \(f\left(\frac{1}{4}\right)=\frac{23}{8}\) ; \(f\left(1\right)=4\)
\(\Rightarrow\frac{23}{8}\le f\left(t\right)\le6\)
\(\Rightarrow\) Pt đã cho có nghiệm khi và chỉ khi \(\frac{23}{8}\le m\le6\)
a/
\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)
\(\Leftrightarrow2m^2+12m+7\le0\)
\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)
c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)
Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)
a/ \(2\left(1-cos^2x\right)+3cos^2x-2=m\)
\(\Leftrightarrow cos^2x=m\)
Do \(0\le cos^2x\le1\) nên pt có nghiệm khi và chỉ khi \(0\le m\le1\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}cosx=m\\sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx=m\\cosx\ne\pm1\end{matrix}\right.\)
\(\Rightarrow-1< m< 1\)