Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = { 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11}
B = { 12; 13; 14; 15; 16; 17; 18; 19}
C = { 0; 2; 6; 12 }
\(B=\left\{-3;-2;-1;0;1;2;3;4\right\}\)
Để \(B\cap C=\varnothing\Leftrightarrow a\in D\)
Với \(D=\left\{x\in Z;x\le-4\right\}\)
Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)
Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)
Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8
nên B là tập các số chẵn
=>A=B
Vì 2k-2=2(k-1) chia hết cho 2
nên C là tập các số chẵn
=>A=C
\(A\cap B=\left\{{}\begin{matrix}x>m\\x\le\dfrac{2m-1}{3}\end{matrix}\right.\left(1\right)\)
\(TH1:m< \dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}< 0\)
\(\Leftrightarrow\dfrac{m-1}{3}< 0\)
\(\Leftrightarrow m< 1\)
\(\left(1\right)\Leftrightarrow A\cap B=\left\{x\in Z|m< x\le\dfrac{2m-1}{3}\right\}\)
\(TH2:m>\dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}>0\)
\(\Leftrightarrow\dfrac{m-1}{3}>0\)
\(\Leftrightarrow m>1\)
\(\left(1\right)\Leftrightarrow A\cap B=\varnothing\)
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
Ta có
A={n∈Z|n<a}
và
B={m∈Z|m>2a+1}
Để hai tập hợp này bằng Z thì chúng phải có ít nhất một phần tử chung. Do đó
2a+1<a
⇔a<−1
Vậy a<−1