K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

Giải 

Ta thấy đa thức dư trong phép chia có dạng ax2 + bx + c

Đặt x2019 + x + 1 = ( x3 - x ) . g( x ) + a2 +bx +c 

+) Với x = 0 ta được 1  = c

+) Với x =1 ta được 3 = a + b +1

=> a + b = 2 ( 1 )

+) Với x= -1 ta được 1 = a -b + 1

=> a -b = 0 ( 2 )

Từ ( 1 ) và ( 2 )

=> a=b=1

Vậy đa thức dư là x2 + x + 1

8 tháng 4 2020

a)

Ta có:

( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019

= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019

= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019         ( 1 )

* Đặt x2 + 8x + 10 = a

thì ( 1 ) trở thành:

     ( a - 3 ) ( a + 5 ) + 2019

=  a2 + 2a - 15 + 2019

= a ( a + 2 ) + 2004

=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.

Vậy ..........

b)

- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x

Ta có:

        A = x/ (x4 + x2 + 1)

        A = x/ [( x2 - x + 1 )( x2 + x + 1 )]

        A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}

        A = x/ [5x . ( 5x + 2x )]

        A = x2 / ( 5x . 7x )

        A = x2 / 35x2

        A = 1/35

Vậy A = 1/35.

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....