Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức bậc 3 là \(f\left(x\right)=ax^3+bx^2+cx+d\)
Ta có: \(f\left(0\right)=-3\Rightarrow d=-3\)
\(f\left(1\right)=-3\Rightarrow a+b+c+d=-3\Rightarrow a+b+c=0\) (1)
\(f\left(-1\right)=4\Rightarrow-a+b-c+d=4\Rightarrow-a+b-c=7\) (2)
Cộng (1) và (2) => 2b = 7 => b = \(\frac{7}{2}\)
Thay b=7/2 vào (2) => \(-a+\frac{7}{2}-c=7\Rightarrow-a-c=\frac{7}{2}\) (3)
\(f\left(2\right)=1\Rightarrow8a+4b+2c+d=1\Rightarrow2\left(4a+c\right)=1-4b-d\Rightarrow4a+c=-5\) (4)
Cộng (3) và (4) => \(3a=-\frac{3}{2}\Rightarrow a=\frac{-1}{2}\Rightarrow c=-3\)
Vậy \(f\left(x\right)=\frac{-1}{2}x^3+\frac{7}{2}x^2-3x-3\)
Giả sử đa thức bậc 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)
Theo đề : \(f\left(0\right)=-3\)
\(\Rightarrow a.o^3+b.0^2+c.0+d=-3\)
\(\Rightarrow d=-3\)
\(\Rightarrow f\left(x\right)=ax^3+bx^2+cx-3\)
* \(f\left(1\right)=-3\)
\(\Rightarrow a.1^3+b.1^2+c.1-3=-3\)
\(\Rightarrow a+b+c=0\) (1)
*\(f\left(-1\right)=4\)
\(\Rightarrow a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)-3=4\)
\(\Rightarrow-a+b-c=7\) (2)
Lấy (1) + (2) theo từng vế được : \(2b=7\Rightarrow b=\frac{7}{2}\)(3)
Thay (3) vào (1) \(\Rightarrow a+c=-\frac{7}{2}\)(4)
*\(f\left(2\right)=1\)
\(\Rightarrow a.2^3+\frac{7}{2}.2^2+c.2-3=1\)
\(\Rightarrow8a+14+2c=4\)
\(\Rightarrow8a+2c=-10\)
\(\Rightarrow4a+c=-5\)(5)
Lấy (4) - (5) theo từng vế được: \(-3a=-\frac{7}{2}-\left(-5\right)\)
\(\Rightarrow a=-\frac{1}{2}\)
Thay vào (4) => c=-3
Vậy \(f\left(x\right)=-\frac{1}{2}x^3+\frac{7}{2}x^2-3x-3\)
1) Gọi \(f\left(x\right)=3x^3+bx^2+cx+d\)
Ta có: \(f\left(1\right)=3+b+c+d=-1\Rightarrow b+c+d=-4\left(1\right)\)
Lại có: \(f\left(2\right)=24+4b+2c+d=2\Rightarrow4b+2c+d=-22\left(2\right)\)
Từ (1); (2) \(\Rightarrow3b+c=-18\)
Mặt khác: \(f\left(10\right)-f\left(-7\right)=3.1000+100b+10c+d+343-49b+7c-d\)
\(=3343+17.\left(3b+c\right)=3343-17.18=3037\)
Câu 2 tương tự