Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2015}=3^{4.503+3}=\left(3^4\right)^{503}.27=\left(...1\right).27=\left(...7\right)\)
\(7^{2016}=\left(7^4\right)^{504}=\left(...1\right)^{504}=\left(...1\right)\)
\(9^{2017}=\left(9^2\right)^{1008}.9=\left(...1\right).9=\left(...9\right)\)
\(19^{2015}=\left(19^2\right)^{1007}.19=\left(...1\right)^{1007}.19=\left(...1\right).19=\left(...9\right)\)
=> 32015.72016.92017.192015 = \(\left(...7\right).\left(...1\right).\left(...9\right).\left(...9\right)=\left(...7\right)\)
\(7^{1999}=7^{1996}\cdot7^3=\overline{......1}\cdot\overline{......3}=\overline{......3}\)
\(8^{2015}=8^{2012}\cdot8^3=\overline{.....6}\cdot\overline{......2}=\overline{......2}\)
\(9^{3^2}=9^9=9^8\cdot9=\overline{......1}\cdot\overline{......9}=\overline{.....9}\)
\(87^{32}=\overline{......1}\)
\(58^{33}=58^{32}\cdot58=\overline{.....6}\cdot58=\overline{.....8}\)
Những số có tận cùng là 5 thì mũ bao nhiêu cũng vẫn sẽ có tận cùng là 5 và nó có dạng:\(...5^x=...5\)
Vậy 2015^2016= một số có tận cùng là 5
Những số có tận cùng là 4 mà số mũ của nó là số lẻ thì nó sẽ có số tận cùng là 4 và nó có dạng:\(...4^x=...4\)
Vì 2015^2016 là số lẻ nên 2014^2015^2016 sẽ có số tận cùng là 4
cho minh nha
a) Nhân thấy : 1000 = 4k
Nên 21000 = 24k = ...6k
Vì ...6k có tận cùng là 6 nên 21000 có tận cùng là 6
b) Nhận thấy 2015 = 2k + 1
Nên 192015 = 192k+1 = 192k.19 = ...1k .19
Vì ...1k có tận cùng là 1 nên 192015 có tận cùng là 9
c) Nhận thấy 2016 = 4k
Nên 72016 = 74k = ...1k
Vì ...1k có tận cùng là 1 nên 72016 có tận cùng là 1
Do 72016 có tận cùng là 1 nên 72016 lũy thừa lên \(7^{2016^{2017}}\) vẫn có tận cùng là 1