K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

11 tháng 10 2016

Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).

 mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:

(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.

Vậy chữ số tận cùng của tổng S là 9.

26 tháng 12 2018

Dễ thấy mọi số mũ đều có dạng 4k+1

=> \(1+2^5+3^9+4^{13}+........+504^{2013}+505^{2017}=\left(....1\right)+\left(.....2\right)+..........+\left(...4\right)+\left(....5\right)\)

chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là:

50=10.5 có chứa thừa số 10

nên cstc của 50 nhóm là: 0

cstc của của 5 số hạng cuối là: 5

=> A có tc là: 5

26 tháng 12 2018

Cảm ơn shitbo nhiều !!!

13 tháng 10 2023

khó quá bạn

14 tháng 10 2023

*) 157²⁴⁰ = [(157⁴)⁵]¹²

157⁴ ≡ 1 (mod 10)

(157⁴)⁵ ≡ 1⁵ (mod 10) ≡ 1 (mod 10)

157²⁴⁰ ≡ [(157⁴)⁵]¹² (mod 10) ≡ 1¹² (mod 10) ≡ 1 (mod 10)

Vậy chữ số tận cùng của 157²⁴⁰ là 1

*) 268²⁶⁸ = [(268⁴)⁵]¹³.268⁸

268⁴ ≡ 6 (mod 10)

(268⁴)⁵ ≡ 6⁵ (mod 10) ≡ 6 (mod 10)

[(268⁴)⁵]¹³ ≡ 6¹³ (mod 10) ≡ 6⁵.6⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)

268⁸ ≡ 268⁴ . 268⁴ (mod 10) ≡ 6 . 6 (mod 10) ≡ 6 (mod 10)

268²⁶⁸ ≡ [(268⁴)⁵]¹³.268⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)

Vậy chữ số tận cùng của 268²⁶⁸ là 6

*) 2023²⁰²² = 2023²⁰⁰⁰.2023²²

2023³ ≡ 7 (mod 10)

(2023³)⁵ ≡ 7⁵ (mod 10) ≡ 7 (mod 10)

2023¹⁶ ≡ (2023³)⁵ . 2023 (mod 10) ≡ 7.2023 (mod 10) ≡ 1 (mod 10)

2023²⁰⁰⁰ ≡ (2023¹⁶)²⁵⁵ (mod 10) ≡ 1¹²⁵ (mod 10) ≡ 1 (mod 10)

(2023³)⁷ ≡ 7⁷ (mod 10) ≡ 3 (mod 10)

2023²² ≡ (2023³)⁷.2023 (mod 10) ≡ 3.3 (mod 10) ≡ 9 (mod 10)

2023²⁰²² ≡ 2023²⁰⁰⁰.2023²⁰²² (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)

Vậy chữ số tận cùng của 2023²⁰²² là 9

20 tháng 11 2017

Nhận xét :

1 = 4 x 0 + 1

5 = 4 x 1 + 1

9 = 4 x 2 + 1

.................

8009 = 4 x 2002 + 1

Mỗi số hạng của S đều được nâng lên lũy thừa 4n + 1 nên giữ nguyên chữ số tận cùng

. Vậy chữ số tận cùng của S là : 2 + 3 + 4 + ....... + 2004 =  2004 + 2 x2003 /2= 1003x2003 = ...9 (

vậy chữ số tận cx là 9