Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x-3}=128\Leftrightarrow2^{x-3}=2^7\Rightarrow x-3=7\Leftrightarrow x=10\)
\(\left(x+6\right)^4=4096\Leftrightarrow\left(x+6\right)^4=2^{12}=\left(2^3\right)^4=8^4\Rightarrow x+6=8\Leftrightarrow x=2\)
\(2^{2018}=\left(2^4\right)^{504}.2^2==16^{504}.4< 16^{900}\\ \)
\(17^{20}>16^{20}=\left(4^2\right)^{20}=4^{40}\)
\(3^{444}=\left(3^4\right)^{111}=81^{111}>64^{111}=\left(4^3\right)^{111}=4^{333}\\ \)
A = \(9999^{999^{99^9}}\)
Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2
Vậy \(999^{99^9}\) = 2k + 1
A = 99992k+1
A = (99992)k.9999
A = \(\overline{...1}\)k. 9999
A = \(\overline{..1}\).9999
A = \(\overline{..9}\)
B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2
Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)
**********************************************************
Ta có: \(2^{1000}=\left(2^2\right)^{500}=4^{500}\) Sẽ có tận cùng là 6 vì số mũ 500 là chẵn
\(4^{161}\) có tận cùng là 4 vì số mũ 161 lẻ
\(\left(19^8\right)^{1945}=\left(...1\right)^{1945}=...1\) có tận cùng là 1
\(\left(3^2\right)^{2010}=9^{2010}\)có tận cùng là 1 vì số mũ 2010 chẵn
6
4
1
1