K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2023

chữ số tận cùng lần lượt là:8,7,4,5,6,3,2,9,0,1

15 tháng 1 2023

bn có thể giải cách lm cho mik đc k ạ

4 tháng 10 2019

\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=16^{604}\cdot4=\overline{.....6}\cdot4=\overline{....4}\)

\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=81^{504}\cdot9=\overline{.....1}\cdot9=\overline{....9}\)

\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot\overline{.....7}=\overline{.....1}\cdot\overline{....7}=\overline{.....7}\)

\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{....6}\cdot8=\overline{......8}\)

\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{.....1}\cdot9=\overline{.....9}\)

4 tháng 10 2019

                                                    Bài giải

Ta có :

\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=\overline{\left(...6\right)}^{504}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy ...

\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=\overline{\left(...1\right)}^{504}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy ...

\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot7^3=\overline{\left(...1\right)}^{504}\cdot343=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy ...

\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{\left(...6\right)}^{505}\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)

Vậy ...

\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{\left(...1\right)}^{1011}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy ...

25 tháng 1 2024

\(\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(4^3-8^2\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(64-64\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).0=0\)

21 tháng 1 2024

  M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)

M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)

   1 =   1 

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\)  <  \(\dfrac{1}{2.3}\)

  \(\dfrac{1}{4.4}\)  < \(\dfrac{1}{3.4}\) 

  ..................

\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)

Cộng vế với vế ta có:

M < 1 +  \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)

M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

M < 2 - \(\dfrac{1}{2023}\) < 2 (2) 

Kết hợp (1) và (2) ta có:

1 < M < 2

Vậy M không phải là số tự nhiên.

 

 

 

21 tháng 1 2024

M =  \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)

M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)

1     =  1

\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

Cộng vế với vế ta có:

   M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)

  M <  1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

   M < 2 - \(\dfrac{1}{2023}\) < 2 (2) 

Kết hợp (1) và (2) ta có: 1 < M < 2 

Vậy M không phải là số tự nhiên. 

 

 

31 tháng 1 2024

Lý thuyết: với toán tử % là phép lấy dư, khi đó:

 \(a^b\%m=\left(a\%10\right)^{b\%4}\%m\)

a) \(3^{2022}\%7=3^2\%7=2\)

b) \(62^{78}\%15=2^2\%15=4\)

c) \(3^{2023}\%10=3^3\%10=7\)

d) \(2^{2000}\%5=2^0\%5=1\)

31 tháng 1 2024

bạn ơi, dùng theo công thức đồng dư được không ?

9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023

DD
10 tháng 12 2021

\(A=1+2+2^2+2^3+...+2^{2020}\)

\(2A=2+2^2+2^3+2^4+...+2^{2021}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)

\(A=2^{2021}-1\)

\(2^n-A=1\)

\(\Leftrightarrow A=2^n-1\)

Suy ra \(n=2021\)

Chọn b. 

9 tháng 12 2021

 số tự nhiên n  thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :

a. n=2020 

b. n=2021

c.n=2022

d.n=2023