Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^4-7x^2+y^2+16=2xy\)
=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)
=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)
=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)
=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)
Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)
Vậy A=8
Xét x = 0
Ta có 1 + 2017y = 2018z
mà 1+2017 = 2018
Nên x = 0; y = z = 1
Xét x > 0
2016 tận cùng 6 nên 2016x luôn tận cùng 6
2017y có tận cùng là 7y và là 1, 7, 9, 3
2018z có tận cùng là 2, 4, 6, 8
Có 6 + 1= 7
6 + 3 = 9
6 + 7 = 13
6 + 9 = 15
Vế trái không có tận cùng bằng VP nên không thỏa mãn
Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)