Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+...+\frac{3}{20.22}\)
\(=\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+...+\frac{1}{20.22}\)
\(=\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
\(=\frac{1}{4}-\frac{1}{22}\)
\(=\frac{9}{44}\)
Muốn biết A chia cho 9 dư bao nhiêu ta chỉ cần tính tổng của tổng các chữ số của các số hạng.
Ta thấy: Tổng các chữ số của 11 là: 2; tổng các chữ số của 111 là: 3; tổng các chữ số của 1111 là: 4; … Suy ra: Tổng của tổng các chữ số của các số hạng sẽ là: 1 + 2 + 3 + … + 20 = (1 + 20) x 20 : 2 = 210
210 chia 9 được 23 dư 3. Vậy A chia 9 dư 3
Ta có
\(1111...11=\frac{10^{2n}-1}{9}\)
\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)
\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)
\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)
=> A là số chính phương
Tổng các chữ số của số hạng thứ nhất là 1
Tổng các chữ số của số hạng thứ hai là 2
Tổng các chữ số của số hạng thứ ba là 3
Tổng các chữ số của số hạng thứ tư là 4
....
Tổng các chữ số của số hạng cuối cùng là 20
Số số hạng của A : ( 20 - 1 ) : 1 + 1 = 20 ( số hạng )
Tổng các chữ số của A : ( 20 + 1 ) . 20 : 2 = 210
Vì 210 : 9 dư 3 nên A chia 9 dư 3