Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5y^2+2y=4xy+3\)
\(\Leftrightarrow x^2-4xy+5y^2+2y-3=0\) \(\left(a=1,b'=-2y,c=5y^2+2y-3\right)\)
Ta có: \(\Delta'=b'^2-ac=\left(-2y\right)^2-1\left(5y^2+2y-3\right)=4y^2-5y^2-2y+3=-y^2-2y+3\)
PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-y^2-2y+3\ge0\Leftrightarrow y^2+2y-3\le0\Leftrightarrow\left(y+1\right)^2-4\le0\Leftrightarrow\left(y+1\right)^2\le4\)
\(\Leftrightarrow-2\le y+1\le2\Leftrightarrow-3\le y\le1\)
Từ đó, ta có: \(y_{min}=-3\), thay vào PT trên, ta có: \(\Delta'=0\)
PT trên có nghiệm kép: \(x=\frac{-b'}{a}=\frac{2y}{1}=2\cdot\left(-3\right)=-6\)
Vậy \(\left(-6;-3\right)\) là cặp số \(\left(x;y\right)\) sao cho y nhỏ nhất thoả mãn điều kiện trên.
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\) (ktm)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
\(\Rightarrow\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy \(\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
( x - 2y )2 + ( y + 1 )2 = 4 mà ( x - 2y ) 2 ≥ 0 ⇒ 4 - ( y + 1 ) 2 ≥ 0 ⇔ - ( y + 3 )( y - 1 ) ≥ 0 chia TH rồi ⇒ y ≥ -3 ymin = -3 ⇒ x = -6
tìm tất cả các cặp số thực (x;y) sao cho y là số nhỏ nhất thoả mãn điều kiện \(x^2+5y^2+2y+4xy-3=0\)
\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
1-y\geq0\\
3+y\geq0
\end{cases}\\
\begin{cases}
1-y\leq0\\
3+y\leq0
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{}
\begin{cases}
y\leq1\\
y\geq-3
\end{cases}\\
\begin{cases}
y\geq1\text{(Vô lí)}\\
y\leq-3\text{(Vô lí)}
\end{cases}
\end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
Vì đây là toán casio nên được phép đùng máy tính để giải. Gợi ý bạn cách giải:
Ta tìm phần nguyên của \(\sqrt{260110}\)là 510.
Ta tính 260110 - 5102 = 10
Vì y là số nguyên dương nhỏ nhất để cho
260110 - 5y là 1 số chính phương nên
5y = 10 => y = 2
=> x = 8
Viết dưới dạng pt ẩn x:
\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)
Vậy Max y = 2, khi đó x = -1.
\(x^2+5y^2+2y-4xy-3=0\)
=>\(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
=>\(\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Gợi ý tới đây bn giải tiếp đi
Mk chưa học lớp 9 nên ko giải đc
- Mình cảm ơn nhiều