Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)
\(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)
TỪ ĐÓ SUY RA Y=9;Z=15
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
e) Ta có:
\(\left\{{}\begin{matrix}2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{1}{7}.\frac{x}{3}=\frac{1}{7}.\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\\7z=5y\Leftrightarrow\frac{z}{5}=\frac{y}{7}\Leftrightarrow\frac{1}{2}.\frac{z}{5}=\frac{1}{2}.\frac{y}{7}\Leftrightarrow\frac{z}{10}=\frac{y}{14}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)
f)Ta có:
\(\frac{x}{4}=\frac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=4k5k=20k^2=80\Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1: \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
TH2: \(k=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)
g)Ta có:
\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}=\frac{3\left(x+3\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{7\left(z-1\right)}{49}=\frac{3x+9}{15}=\frac{5y-10}{15}=\frac{7z-7}{49}=\frac{3x+9+5y-10-\left(7z-7\right)}{15+15-49}=\frac{3x+5y-7z+\left(9-10+7\right)}{-19}=\frac{38}{-19}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-13\\y=-4\\z=-13\end{matrix}\right.\) h)Ta có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{16-9}=\frac{63}{7}=9\) \(\Rightarrow\left\{{}\begin{matrix}x^2=144\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\\y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\end{matrix}\right.\) Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=9\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-9\end{matrix}\right.\end{matrix}\right.\)
Đặt \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=k\)=>\(\hept{\begin{cases}x=5k+1\\y=3k+2\\z=2k+2\end{cases}}\)
Có \(3x^2-5y^2-6z^2=43\)<=>\(3\left(5k+1\right)^2-5\left(3k+2\right)^2-6\left(2k+2\right)^2=43\)
\(\Leftrightarrow3\left(25k^2+10k+1\right)-5\left(9k^2+12k+4\right)-6\left(4k^2+8k+4\right)=43\)
\(\Leftrightarrow75k^2+30k+3-45k^2-60k-20-24k^2-48k-24=43\)
\(\Leftrightarrow6k^2-78k-41=43\)\(\Leftrightarrow6k^2-78-84=0\)\(\Leftrightarrow6\left(k-14\right)\left(k+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-14=0\\k+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=14\\k=-1\end{cases}}\)
+) Với k=14 thì: x=14.5+1=71;y=14.3+2=44;z=14.2+2=30
+) Với k=-1 thì: x=(-1).5+1=-4;y=(-1).3+2=-1;z=(-1).2+2=0
Vậy .....................