K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

+ ta có 
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3) 
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại 
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại 
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận 
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố

11 tháng 3 2019

ai đó giải dùm mik đi mik chịu rùi T^T

4 tháng 2 2019

\(m-1⋮2m+1\)

\(\Rightarrow2m-2⋮2m+1\)

\(\Rightarrow2m+1-3⋮2m+1\)

\(\Rightarrow3⋮2m+1\)

tu lam

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

4 tháng 2 2019

cảm ơn bạn rất nhiều 

13 tháng 7 2016

ta có:

\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\) 

=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3

2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)

=> n+2 chia hết cho 3

=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.

Ta thấy

- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2

- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p

Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2

=> p^2 không chia hết cho 2 nên p không chia hết cho 2

=> p^3 không chia hết cho 2

Vậy p^3 +2 là số nguyên tố

a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!

nghĩ thui

16 tháng 4 2016

bạn làm cho mình câu b nhé