K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Xet \(n=3k\)

\(\Rightarrow3^{6k}+3^{3k}+1\equiv3\left(mod13\right)\)

Xet \(n=3k+1\)

\(\Rightarrow3^{6k+2}+3^{3k+1}+1\equiv9+3+1\equiv0\left(mod13\right)\) 

Xet \(n=3k+2\)

\(\Rightarrow3^{6k+3+1}+3^{3k+2}+1\equiv3+9+1\equiv0\left(mod13\right)\)

Vậy vơi mọi n tự nhiên và n không chia hêt cho 3 thì 

\(3^{2n}+3^n+1⋮13\)

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

21 tháng 8 2018

3^2n+3^n=9^n+3^n⋮12 đồng dư 12 mod 13

⇒3^2n+3^n+1⋮13⇒3^2n+3^n+1⋮13

17 tháng 1 2016

n=1

tick tớ nhé nha các bạn

17 tháng 1 2016

bắt c/m bới vmoij m đi tìm m :))

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

2 tháng 11 2016

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2