Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Quốc Hưng - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài ở link này nhé!
Với mọi số nguyên n ta có \(n\le n^2\). Do đó từ đề bài suy ra :
\(a^2\le b\le b^2\le c\le c^2\le a\le a^2\)
Do đó \(a^2=b=b^2=c=c^2=a=a^2\)
Ta có \(a^2=a\Leftrightarrow a(a-1)=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
Tương tự \(\orbr{\begin{cases}b=0\\b=1\end{cases}},\orbr{\begin{cases}c=0\\c=1\end{cases}}\)
Có 2 đáp số a = b = c = 0 và a = b = c = 1
cho a, b,c là các số tự nhiên khác 0.Biết 28/29<1/a+1/b+1/c<1.tìm giá trị nhở nhất của tổng P =a+b+c
Để tính GTNN của P=a+b+c thì ta cực tiểu hóa a,b và c (*)
Không giảm tính tổng quát,giả sử \(1\le a\le b\le c\) \(\Rightarrow\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\Rightarrow\frac{28}{29}<\frac{3}{a}\)=>1<a<3 và 3/28 =>a E {2;3} do a E N
\(\)
+)a=2=>b>2 từ (*) chọn b=3 và c=7 vì 1/2+1/3+1/7=41/42 mà 28/29<41/42<1
+)a=3=>c >= b >= 3,nếu a=b=c=3 thì 1/a+1/b+1/c=1
Nếu a=3;b ,c >= 4 thì 1/a+1/b+1/c <= 1/3+1/4+1/4=5/6<28/29(loại a=3)
Vậy (a+b+c)min=2+3+7=12