Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a<b=>a+b<b+b=2b
Vì a>2=>ab>2b>a+b
=>a+b<ab
Xét b<a=>a+b<a+a=2a
Vì b>2=>ab>2a>a+b
=>a+b<ab
Vậy a+b<ab
Giả sử a<b.
=>a+b<b+b=2b
Vì a>2=>ab>2b>a+b
=>a+b<ab
Giả sử b<a.
=>a+b<a+a=2a
Vì b>2=>ab>2a>a+b
=>a+b<ab
Vậy a+b<ab
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
Ta có : ab+a+b=5
a(b+1)+b=5
a(b+1)+(b+1)=5+1
(a+1)(b+1)=6
Vì (a+1)(b+1)=6 nên a+1 và b+1 là ước của 6
Mà Ư(6)={1;2;3;6}
Ta có bảng giá trị
a+1 | 1 | 2 | 3 | 6 |
a | 0 | 1 | 2 | 5 |
b+1 | 6 | 3 | 2 | 1 |
b | 5 | 2 | 1 | 0 |
Vậy ta có các cặp số tự nhiên(a,b) là: (0,5);(1,2);(2,1);(5,0)
\(132=2^2.3.11\)
\(\Rightarrow\left(a.b\right)=\left\{\left(2.66\right);\left(3.44\right);\left(4.33\right);\left(6.22\right);\left(11.12\right)\right\}\)