Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x-y\right|\) có cùng tính chất chẵn lẻ với \(x-y\)
\(\left|y-z\right|\) có cùng tính chất chẵn lẻ với \(y-z\)
\(\left|z-t\right|\) có cùng tính chất chẵn lẻ với \(z-t\)
\(\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(t-x\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(x-y+y-z+z-t+t-x=0\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) luôn chẵn
Mà 2015 lẻ \(\Rightarrow\) không có số nguyên x ; y ; z ; t nào thỏa mãn đề bài
Vì :
|x - y| cùng tính chất chẵn lẻ với x - y
|y - z| cùng tính chất chẵn lẻ với y - z
|z - t| cùng tính chất chẵn lẻ với z - t
|t - x| cùng tính chất chẵn lẻ với t - x
=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)
Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn
=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn
Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017
=> x ; y ; z ; t \(\in\phi\)
Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
= (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
= x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
(Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow1+\frac{y+z+t}{x}=1+\frac{z+t+x}{y}=1+\frac{t+x+y}{z}=1+\frac{x+y+z}{t}\)
\(\Leftrightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)
\(TH1:x+y+z+t=0\left(ĐK:x,y,z,t\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\end{cases}\Rightarrow P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{x+t}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(y+z\right)}}\)=-4
\(TH2:x+y+z+t\ne0\)
\(\Rightarrow x=y=z=t\Rightarrow P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=4\)
Vậy P=4 hay P=-4
Trả lời :..................................
P = 4,..................................
Hk tốt......................................
\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)
\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)
có nghiệm \(\Rightarrow b^2-4a\ge0\)
\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)
Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn
\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)
\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)
\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)
Hiệu hai số CP =4 duy nhất có 4 và 0
\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)
Ta có:
(x - y) + (y - z) + (z - x)
= x - y + y - z + z - x
= 0
Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)
Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn
Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài
Ủng hộ mk nha ^_-
x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :
<=> x - y + y - z -(z - x) =2015
<=> 2(x - z) =2015 (*)
x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.
Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.
đâu mình chỉ thử xem cậu có on ko thoi
ngu vk ko biêt trả lời câu này ngu ngu ngu ngu mắc cả ngu