K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Ta có :

\(\left|x-y\right|\) có cùng tính chất chẵn lẻ với \(x-y\)

\(\left|y-z\right|\) có cùng tính chất chẵn lẻ với \(y-z\)

\(\left|z-t\right|\)  có cùng tính chất chẵn lẻ với \(z-t\)

\(\left|t-x\right|\)  có cùng tính chất chẵn lẻ với \(t-x\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(x-y+y-z+z-t+t-x=0\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) luôn chẵn

Mà 2015 lẻ \(\Rightarrow\) không có số nguyên x ; y ; z ; t nào thỏa mãn đề bài

15 tháng 5 2017

k mk đi

7 tháng 5 2017

Vì :

|x - y| cùng tính chất chẵn lẻ với x - y

|y - z| cùng tính chất chẵn lẻ với y - z

|z - t| cùng tính chất chẵn lẻ với z - t

|t - x| cùng tính chất chẵn lẻ với t - x

=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)

Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn

=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn

Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017

=> x ; y ; z ; t \(\in\phi\)

3 tháng 7 2016

Ta có:

(x - y) + (y - z) + (z - x)

= x - y + y - z + z - x

= 0

Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)

Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn

Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài

Ủng hộ mk nha ^_-

3 tháng 7 2016

x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :

<=> x - y + y - z -(z - x) =2015

<=> 2(x - z) =2015 (*)

x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.

Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.

4 tháng 3 2018

Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014

4 tháng 3 2018

vậy bn làm theo cái đúng của bn,mong bn giúp mk

28 tháng 6 2017

Ta có: \(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\left(x+y+z\right)^2=9\)

\(\Leftrightarrow x+y+z=-3\) hoặc \(3\)

Nếu \(x+y+z=-3\) thì \(\hept{\begin{cases}x=\frac{-5}{-3}=\frac{5}{3}\\y=\frac{9}{-3}=-3\\z=\frac{5}{-3}=\frac{-5}{3}\end{cases}}\)

Nếu \(x+y+z=3\) thì: \(\hept{\begin{cases}x=\frac{-5}{3}=-\frac{5}{3}\\y=\frac{9}{3}=3\\z=\frac{5}{3}=\frac{5}{3}\end{cases}}\)

Vậy...

vì x/y+y/z+z/x=y/x+z/y+x/z=x+y+z

\(\Rightarrow\)x=y=z mà x+y+z=3

\(\Rightarrow\)x=1 , y=1 ,z=1

Vậy x=1 ,y=1,z=1