Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM ta có:
\(x^5+\frac{1}{x}+1+1\ge4\sqrt[4]{x^5.\frac{1}{x}}=4x\)
Chứng minh tương tự: \(y^5+\frac{1}{y}+1+1\ge4\sqrt[4]{y^5.\frac{1}{y}}=4y\)
\(z^5+\frac{1}{z}+1+1\ge4\sqrt[4]{z^5.\frac{1}{z}}=4z\)
\(\Rightarrow T+6\ge4\left(x+y+z\right)=12\)
\(\Leftrightarrow T\ge6\)
Dấu " = " xảy ra <=> x=y=z=1
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
\(x^3+y^3+z^3=x+y+z+2011\)
\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2011\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2011\)
ta sẽ chứng minh trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
thật vậy:
gọi 3 số tự nhiên liên tiếp là: a,a+1,a+2 (a thuộc N)
a có 1 trong 3 dạng: 3k;3k+1;3k+2 ( k thuộc N)
+) a=3k => a chia hết cho 3
+) a=3k+1 => a+2=3k+3 chia hết cho 3
+) a=3k+2 => a+1=3k+3 chia hết cho 3
nên: trong 3 số x-1;x;x+1 có 1 số chia hết cho 3; tương tự với 3 số y-1;y;y+1 và: z-1;z;z+1 cũng vậy nên:
(x-1)x(x+1); (y-1)y(y+1); (z-1)z(z+1) đều chia hết cho 3 => (x-1)x(x+1)+(y-1)y(y+1)+(z-1)z(z+1) chia hết cho 3
=> 2011 chia hết cho 3 (vô lí)
nên không tìm được x,y,z thỏa mãn