K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LD
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TH
0
VT
5
19 tháng 5 2016
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
17 tháng 7 2017
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
DT
2
(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2
(x + 2y)2 + (x + 2y)(y + 1) = 2
(x + 2y)(x + 3y + 1) = 2
TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)
TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)
TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)
Mình nghĩ nên lập bảng tốt hơn