Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n + 1 là ước của 20 => n + 1 \(\in\){ 1 , 2 , 4 , 5 , 10 , 20 }
=> n \(\in\){ 0 ; 1 ; 3 ; 4 ; 9 ; 19 }
b, n + 3 là ước của 15 => n + 3 \(\in\){ 1 ; 3 ; 5 ; 15 }
=> n \(\in\){ 0 ; 2 ; 12 }
c , 10 \(⋮\)x - 2 => x - 2 \(\in\){ 1 ; 2 ; 5 ; 10 }
x \(\in\){ 3 ; 5 ; 7 ; 12 }
d, 12 \(⋮\)2x + 1 . 2x + 1 là số lẻ =.> 2x + 1 \(\in\){ 3 ; 1 }
x \(\in\){ 1 ; 0 }
a)n+1 là bội của n-5
=>n+1 chia hết n-5
<=>(n-5)+6 chia hết n-5
=> 6 chia hết n-5
=>n-5\(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){4,3,2,-1,6,7,8,11}
b)<=>3(n-3)-2 chia hết n-3
=>6 chia hết n-3
=>n-3 \(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){2,1,0,-3,4,5,6,9}
Ư (15) = {\(\pm\)1;\(\pm\)3;\(\pm5\);\(\pm\)15}
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 3 => n = 4
n-1 = -3 => n = -2
n-1 = 5 => n = 6
n-1 = -5 => n = -4
n-1 = 15 => n = 16
n-1 = -15 => n = -14
Vậy n-1 thuộc {1;-1;3;-3;5;-5;15;-15}
n thuộc {2;0;4;-2;6;-4;16;-14}
vì (n + 1) \(\in\) Ư(15)
mà Ư(15) = { - 15; -5; - 3; -1; 1; 3; 5; 15}
=> (n + 1) \(\in\) {-15; -5; -3;-1; 1; 3; 5; 15 }
vì n \(\in\) N nên ta có bảng các giá trị của n :
n +1 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -16 | -6 | -4 | -2 | 0 | 2 | 4 | 14 |
nhận xét | loại | loại | loại | loại | chọn | chọn | chọn | chọn |
vậy với x \(\in\) {0; 2; 4; 14} thì n+ 1 là ước của 15
b/ vì n+ 5 \(\in\)Ư(12)
mà Ư(12) = {-12; -6; -4; -3; -2; -1; 1;2;3;4;6;12}
=> n + 5 \(\in\) {-12; -6; -4; -3; -2; -1; 1;2 ;3;4;6;12}
vì n \(\in\) N nên ta có bảng các giá trị của n :
n+5 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -17 | -11 | -9 | -8 | -7 | -6 | -4 | -3 | -2 | -1 | 1 | 7 |
nhận xét | loại | loại | loại | loại | loại | loại | loại | loại | loại | loại | chọn | chọn |
vậy với x \(\in\) {1; 7} thì n+ 5 là Ư(12)
A.n+1 là ước của 15
suy ra:Ư(15)={1;3;5;15}
Vậy n={1;3;5;15}
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
a)
Ta có:
(n-1)∈Ư(15)={±1;±3;±5;±15}
=>n∈{2;0;4;-2;6;-4;16;-14}
Vậy: n∈{2;0;4;-2;6;-4;16;-14}
b)
Ta có:
2n-1 chia hết cho n-3
=>2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> (n-3)∈Ư(5)={±1;±5}
=>n∈{4;2;8;-2}
Vậy: n∈{4;2;8;-2}
a, n-1 \(\in\)Ư(15)
\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
b, 2n-1 \(⋮\)n - 3
( n -3 ) + ( n -3 ) + 5 \(⋮\)n - 3
Vì n - 3 \(⋮\)n - 3
nên 5 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 4 ; 2 ; 8 ; -2 }
Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }
~ HOK TỐT ~