Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)
\(=\frac{3\left(2n-1\right)+8}{2n-1}\)
\(=3+\frac{8}{2n-1}\)
Để B nguyên thì \(2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
Ta có : \(2n-1=1\Rightarrow n=1\)
\(2n-1=-1\Rightarrow n=0\)
\(2n-1=2\Rightarrow n=1,5\)
\(2n-1=-2\Rightarrow n=-0,5\)
\(2n-1=4\Rightarrow n=2,5\)
\(2n-1=-4\Rightarrow n=-1,5\)
\(2n-1=8\Rightarrow n=4,5\)
\(2n-1=-8\Rightarrow n=-3,5\)
Để B nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)
=> \(2n\in\left\{2;0\right\}\)
=> \(n\in\left\{1;0\right\}\)
1)
\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).
\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)
Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 } ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )
\(\Rightarrow n\in\) { -4; 0; 2; 6 }
Vậy \(n\in\) { -4; 0; 2; 6 }
2)
a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)
Quy đồng mẫu các phân số ta có:
\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)
\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\); \(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.
Vậy 3 phân số tiếp theo là \(\frac{2}{3}\); \(\frac{5}{6}\)và 1.
b)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).
c)
Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)
a) n+2 /n+1
Để n+2/n+1 có giá trị nguyên thì n+2 \(⋮\)n+1
=> n+1+1\(⋮\) n+1
=>1 \(⋮\) n+1
=> n+1 thuộc Ư(1)={\(\pm\)1}
=> n thuộc {0;-2}
b) n-3/n+2
Để n+2/n+1 có giá trị nguyên thì n-3 \(⋮\)n+2
=> n+2 - 5 chia hết cho n+2
=> 5 chia hết cho n+2
(Những phần sau tự làm)
=> n+2 chia het n+1
=> n+1+1 chia het n+1
vì n+1 chia het n+1 => 1 phai chia het n+1
=> n+1 thuoc Ư(1)={ 1 , -1 }
=> n thuoc { 0 , -2 }
vay n = 0;-2.
a) \(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)là số nguyên tương đương với \(\frac{2}{n-1}\)là số nguyên
mà \(n\)là số nguyên nên \(n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-1,0,2,3\right\}\).
b) \(\frac{3n+1}{n+1}=\frac{3n+3-2}{n+1}=3-\frac{2}{n+1}\)là số nguyên tương đương với \(\frac{2}{n+1}\)là số nguyên
mà \(n\)là số nguyên nên \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-3,-2,0,1\right\}\).
a, \(A=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=\frac{2.\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để A có giá trị là số nguyên
=>5/3n+2 phải là số nguyên
=>5 chia hết cho 3n+2
=>3n+2 thuộc Ư(5)={-1;1;-5;5}
Vì 3n+2 là số chia cho 3 dư 2
=>3n+2=5
=>3n=5-2
=>3n=3
=>n=3:3
=>n=1
Ý, Nguyễn Lê Thanh Hà là nick cũ của mik nè.Tuần này lại mất thêm 2 nick. Tổng cộng mik mất nick 3 lần r mà chẳng lấy lại dc! Ko bít đứa nào hack r đổi mật khẩu nx lun!!
a) Đặt \(A=\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=\frac{n-3}{n-3}-\frac{2}{n-3}=1-\frac{2}{n-3}\)
Để A là số nguyên
=> 2/n-3 là số nguyên
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2)={1;-1;2;-2}
...
rùi bn tự thay giá trị của n -3 vào để tìm n nhé!
b) Đặt \(B=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=\frac{2.\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
Để B là số nguyên
=> 1/n+1 là số nguyên
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = { 1;-1}
...