Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(M\in Z\)thì 7 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;7;-7\right\}\)
=> \(x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)thỏa mãn đề bài
Để M nguyên thì 7 chia hết cho x-1
Vậy x-1 thuộc:
+-1;+-7.
=> x thuộc:
0;2;8;-6.
Chúc em học tốt^^
câu 1 cho A rồi làm gì nữa vậy
câu 2 mình nói cách làm rồi sau này bạn tự áp dụng nhé !
với những bài như thế này thì bạn rút gọn phân thức (nhớ đk là mẫu khác 0 ) , chẳng hạn :
\(A=\frac{3n+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
vì 3 là số nguyên , => để A nguyên thì 21/(n-4) phải nguyên mà n nguyên (*) nên n-4 là ước của 21 từ đó tìm n
(*) nếu đề bài ko cho n nguyên thì ko làm cách này đc đâu nhé ! nhưng lớp 6 chắc chưa học đến cái đó đâu .
\(\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1=\left\{-1;1-2;2\right\}\)
\(\Rightarrow x-1=-1\Rightarrow x=0\)
...........
Tự thay nha
Để \(M\in Z\)thì x + 1 chia hết cho x - 1
=> x - 1 + 2 chia hết cho x - 1
Do x - 1 chia hết cho x - 1 => 2 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;2;-2\right\}\)
=> \(x\in\left\{2;0;3;-1\right\}\)
A=2(n-5)+11/n-5=2+11/n-5
để A là 1 số nguyên thì 11 chia hết cho n-5
hay n-5 thuộc ước của 11
n-5 thuộc 11;-11;1;-1
n thuộc 16;-6;6;4
kl:.....
Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5
Suy ra 2n - 10 + 11 chia hết cho n - 5
Suy ra 2(n - 5) + 11 chia hết cho n - 5
Suy ra 11 chia hết cho n - 5
Suy ra n - 5 là ước của 11
Còn lại bạn làm nốt. Mình ngại làm lắm.
Để M thuộc Z thì x + 1 chia hết cho 3
=> \(x=3.k+2\left(k\in Z\right)\)
Vậy với \(x=3.k+2\left(k\in Z\right)\)thì \(M=\frac{x+1}{3}\in Z\)
(x+1) / 3 thuộc Z
=> x+1 chia hết cho 3
=> x+1=3k ( k E Z )
x=3k-1
Với x=3k-1 thì (x+1) / 3 thuộc Z
Để \(M\in Z\)thì x + 2 chia hết cho 3
=> \(x=3k+1\left(k\in Z\right)\)
Vậy với \(x=3k+1\left(k\in Z\right)\)thì \(M\in Z\)
\(M\in Z\)=>x+2 chia hết cho 3
=>x+2=3k ( \(k\in Z\))
x=3k-2 ( \(k\in Z\))
Với x=3k-2 thì M thuộc Z
a)\(\left|2x+\frac{1}{2}\right|\ge0\Rightarrow-\left|2x+\frac{1}{2}\right|\le0\)
\(\Rightarrow A=4,5-\left|2x+\frac{1}{2}\right|=4,5+\left(-\left|2x+\frac{1}{2}\right|\right)\le4,5\)
Đẳng thức xảy ra khi: \(2x+\frac{1}{2}=0\Rightarrow2x=\frac{-1}{2}\Rightarrow x=\frac{-1}{4}\)
Vậy giá trị lớn nhất của A là 4,5 khi \(x=\frac{-1}{4}\).
DKXD cua phan thuc \(n\ne-9\)
\(\frac{7n-1}{n+9}=\frac{7n+63-64}{n+9}=\frac{7\left(n+9\right)-64}{n+9}=\frac{7\left(n+9\right)}{n+9}-\frac{64}{n+9}\)\(=7-\frac{64}{n+9}\)
De phan thuc dat gia tri nguyen => \(\frac{64}{n+9}\)nguyen
<=> \(64⋮n+9\)<=> \(n+9\in U\left(64\right)\)
<=> \(n+9\in\left\{-64;-32;-16;-8;-4;-2;-1;1;2;4;8;16;32;64\right\}\)
=> \(n\in\left\{-73;-41;-25;-17;-13;-11;-10;-7;-5;-1;7;23;55\right\}\)
\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)
\(=\frac{3\left(2n-1\right)+8}{2n-1}\)
\(=3+\frac{8}{2n-1}\)
Để B nguyên thì \(2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
Ta có : \(2n-1=1\Rightarrow n=1\)
\(2n-1=-1\Rightarrow n=0\)
\(2n-1=2\Rightarrow n=1,5\)
\(2n-1=-2\Rightarrow n=-0,5\)
\(2n-1=4\Rightarrow n=2,5\)
\(2n-1=-4\Rightarrow n=-1,5\)
\(2n-1=8\Rightarrow n=4,5\)
\(2n-1=-8\Rightarrow n=-3,5\)
Để B nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)
=> \(2n\in\left\{2;0\right\}\)
=> \(n\in\left\{1;0\right\}\)