K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

ể max thông minh mà bài này không nghĩ ra á

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{8}\Leftrightarrow8x+8y=xy\Leftrightarrow8x+8y-xy=0\)

\(\Leftrightarrow\left(8x-xy\right)-\left(64-8y\right)=-64\Leftrightarrow x\left(8-y\right)-8\left(8-y\right)=-64\)

\(\Leftrightarrow\left(x-8\right)\left(8-y\right)=-64\)

rồi kẻ bảng ra mà tìm x;y

14 tháng 10 2020

a) Ta có :

a/b+c< 2a/(a+b+c)

b/(c+a)<2b/(a+b+c)

c/(a+b)<2c/(a+b+c)

=> a/(b+c)+b/(c+a)+c/(a+b)<(2a+2b+2c)/(a+b+c)=2

Vậy...

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

12 tháng 6 2015

A=\(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)

A=\(3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

Mà :\(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{x}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=> A < 2                                        (1)

Mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

Mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=>A > 1                                       (2)

Từ (1) và (2)=> 1 < A < 2 <=> A không phải là số nguyên

14 tháng 6 2016
ĐA: (x,y) = (5,20) hay (6,12) Vì 1 <= x < y nên 1/x > 1/y 1/4 = 1/x + 1/y <= 2/x (bđt Cauchy) ==> x <=8 Mặt khác 1/x < 1/4 ==> x > 4 x = 5 ==> y = 20 x = 6 ==> y = 12 x = 7 ==> y = 28/3 (loại) x = 8 ==> y = 8 (loại)
14 tháng 6 2016

Ta có: 1/4 = 3/12

Mà 3 = 1 + 2

Vậy 3/12 = 1/12 + 2/12

Rút gọn ra đáp án: 1/4 = 1/12 + 1/6

21 tháng 2 2021

Ta có:

 x/x+y + y/y+z + z/z+x = 1+ y+ 1+z+ 1+x= 3+x+y+z

 Do, x,y,z là các số nguyên dương nên 3+x+y+z> 3 >1