Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp: n là số chẵn
Đặt n=2kn=2k⇒2n+32+42=4k++32k+42k⇒2n+32+42=4k++32k+42k chia cho 3 dư 2 nên không phải là số chính phương
Trường hợp: n là số lẽ.
Với n=1n=1 thì 2n+3n+4n=92n+3n+4n=9 là số chính phương.
Với n≥3n≥3
Đặt n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1n=2t+1(t≥1)⇒2n+3n+4n=2.(4t)+3.(9t)+42t+1 chia cho 4 dư 3 nên không phải là số chính phương.
Vậy ta chọn n=1
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1