Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(-2\right)^0+1^{2017}+\left(-\frac{1}{3}\right)^8.3^8}{2^{15}}\)
\(=\frac{1+1+\frac{1}{3^8}.3^8}{2^{15}}\)
\(=\frac{1+1+1}{2^{15}}\)
\(=\frac{3}{2^{15}}\)
\(B=\frac{6^2}{2^{16}}\)
\(=\frac{2^2.3^2}{2^2.2^{14}}\)
\(=\frac{9}{2^{14}}\)
Dễ dàng thấy \(9>3\)
\(2^{14}< 2^{15}\)
Phép chia có cùng mẫu, tử lớn hơn thì đã lớn hơn, nay mẫu còn nhỏ hơn, chắc chắn rằng \(B>A\)
Vậy ...
a/ Xét : \(\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)
\(\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)
Vậy ta có đpcm
b/ Giả sử các số cần tìm là \(-\frac{1}{3}< x< y< z< -\frac{1}{4}\)
Tìm các số dựa theo ý a)
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
a - b = 2(a+b) = 2a + 2b
-a = 3b
a-b = -3b- b = -4b = \(\frac{a}{b}\)=\(\frac{-3b}{b}\)= - 3
b= 3/4
a= -3b= -9/4