K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

a/ Xét : \(\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)

\(\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (đúng)

Vậy ta có đpcm

b/ Giả sử các số cần tìm là \(-\frac{1}{3}< x< y< z< -\frac{1}{4}\)

Tìm các số dựa theo ý a)

3 tháng 9 2016

ko phải, ý mình là giải thích vì sao làm như vậy cơ

23 tháng 5 2017

a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Từ ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)

Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)\(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)
 

10 tháng 6 2015

a) Ta có : a/b < c/d => ad<bc

Ta ab vào hai vế,ta được:

ad+ab < bc+ab => a(b+d) < b(a+c) => \(\frac{a}{b}<\frac{a+c}{b+d}\)                                               (1)

Ta thêm lại cd vào hai vế,ta được:

ad+cd < bc+cd => d(a+c) < c(b+d) => \(\frac{c}{d}>\frac{a+c}{b+d}\)                                           (2)

Từ (1) và (2),suy ra : ab < a+c/b+d < c/d

b)Ba số hữu tỉ xen giữa -1/3 và -1/4 là : -15/48 ; -14/48 và -13/48

27 tháng 9 2017

a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).

Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức  \(\frac{a}{b}< \frac{a+c}{b+d}\) và  \(\frac{a+c}{b+d}< \frac{c}{d}\)

Ta cần chứng minh:

     \(\frac{a}{b}< \frac{a+c}{b+d}\)

    \(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)

    \(\Leftrightarrow ab+ad< ab+cb\)

   \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.

Ta cần chứng minh tiếp:

      \(\frac{a+c}{b+d}< \frac{c}{d}\)

     \(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0

     \(\Leftrightarrow ad+cd< cb+cd\)

    \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng do giả thiết.

Vậy bài toán được chứng minh

b) Áp dụng câu a ta có:

Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)

Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

Áp dụng tiếp kết quả câu a ta được:

  \(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)

Hay là:

  \(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)

Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)

27 tháng 9 2017

a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)

Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)

Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)

13 tháng 9 2020

a) Có \(\frac{a}{b}< \frac{c}{d}\)Nhân 2 vế cho b.d>0\(\Rightarrow\frac{abd}{b}< \frac{cbd}{d}\Leftrightarrow ad< bc\)(1)

+) Cộng 2 của (1) vế cho ab: \(ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

Chia 2 vế cho b(b+d)>0: \(\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

+) Cộng 2 vế của (1) cho cd: \(cd+ad< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

Chia 2 vế cho d(b+d)>0: \(\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy ...............

b) Xét \(\frac{-1}{3}=\frac{-4}{12}\)và \(\frac{-1}{4}=\frac{-4}{16}\)

----> 3 số hữu tỉ ở giữa là \(\frac{-4}{13},\frac{-4}{14},\frac{-4}{15}\)

31 tháng 7 2017

\(\frac{a}{b}=\frac{ad}{bd}\)

\(\frac{c}{d}=\frac{cb}{bd}\)

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)

9 tháng 6 2019

a, Theo đề bài ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)                                                     \((1)\)

Thêm ab vào hai vế của 1  :          \(ad+ab< bc+ab\)

                                                  \(a(b+d)< b(a+c)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)        \((2)\)

Thêm cd vào hai vế của 1 :           \(ad+cd< bc+cd\)

                                                  \(d(a+c)< c(b+d)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)           \((3)\)

Từ 2 và 3 suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, Theo câu a ta lần lượt có :

\(\frac{-1}{3}< \frac{-1}{4}\Rightarrow\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

\(\frac{-1}{3}< \frac{-2}{7}\Rightarrow\frac{-1}{3}< \frac{3}{10}< \frac{-2}{7}\)

\(\frac{-1}{3}< \frac{-3}{10}\Rightarrow\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}\)

Vậy : \(\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}< \frac{-2}{7}< \frac{-1}{4}\)

15 tháng 8 2015

a.  ta có a\b < c\d nên

    ad < bc

    ad+ab < bc+ba                 

    a( d+b) < b( c+a)

    a\b < a+c\b+d    (1)

    ad<bc

   ad +cd < bc+cd

   d (a+c) < c(b+d)

   a+c\b+d< c\d     (2)

   Từ 1 và 2 suy ra     a\b < a+c\b+d < c\d

b. ta có -1\3 < -1\4

    nên  -1\3 < -2\7 < -3\11 < -4\15 < -1\4

c. Số hữu tỉ âm nhỏ hơn số tự nhiên là đúng

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

24 tháng 8 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\left(1\right)\)

Cộng 2 vế của (1) với ab

ad+ab<bc+ab

a(b+d)<b(a+c) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Cộng 2 vế của (1) với cd: ad+cd<bc+cd

d(a+c)<c(b+d) \(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đpcm

b)Theo phần a có:

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy  \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

 

30 tháng 8 2016

a) Giả sử: \(\frac{a}{b}< \frac{a+c}{b+d}\)        (1)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\) 

\(\Rightarrow ab+ad< ba+bc\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}< \frac{c}{d}\) )

Vậy (1) là đúng.    (3)

Giả sử: \(\frac{a+c}{b+d}< \frac{c}{d}\)  (2)

\(\Rightarrow\left(a+c\right).d< \left(b+d\right).c\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}=\frac{c}{d}\) )

Vậy (2) đúng.  (4)

Từ (3) và (4) suy ra:

\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

b) \(\frac{-1}{3}< \frac{-2}{7}< \frac{-3}{11},< \frac{-4}{15}< \frac{-1}{4}\)

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)