K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Xét hàm số \(y =  - 5x + 2\) xác định trên \(\mathbb{R}\)

Lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do  \({x_1} < {x_2}\) nên \( - 5{x_1} >  - 5{x_2}\), suy ra \( - 5{x_1} + 2 >  - 5{x_2} + 2\)

Từ đây ta có \(f({x_1}) > f({x_2})\)

Vậy hàm số ngịch biến (giảm) trên \(\mathbb{R}\)

b) Xét hàm số \(y = f(x) =  - {x^2}\) xác định trên \(\mathbb{R}\)

+ Trên khoảng \((0; + \infty )\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in (0; + \infty )\) nên \({x_1} + {x_2} > 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) > 0\) hay \(f({x_1}) > f({x_2})\)

Vậy hàm số nghịch biến (giảm) trên khoảng \((0; + \infty )\)

+ Trên khoảng \(( - \infty ;0)\) lấy \({x_1},{x_2} \in \mathbb{R}\) là hai số tùy ý sao cho \({x_1} < {x_2}\)., ta có: \(f({x_1}) - f({x_2}) =  - {x_1}^2 + {x_2}^2 = \left( {{x_2} - {x_1}} \right)({x_2} + {x_1})\)

Do  \({x_1} < {x_2}\) nên \( {x_2} - {x_1} > 0\) và do \({x_1},{x_2} \in ( - \infty ;0)\) nên \({x_1} + {x_2} < 0\).

Từ đây suy ra \(f({x_1}) - f({x_2}) < 0\) hay \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng \(( - \infty ;0)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

10 tháng 10 2021

a) Đk:\(x\in R\)

TH1:Xét \(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)

Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)

\(\Rightarrow I>0\)

Hàm đồng biến trên \(\left(3;+\infty\right)\)

TH2:Xét \(x\in\left(-10;1\right)\)

Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)

Xét \(I=2\left(x_1+x_2\right)-4\)

Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)

Hàm nb trên khoảng \(\left(-10;1\right)\)

b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)

c)Đk: \(x\in R\backslash\left\{2\right\}\)

=>Hàm số xác định trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)

Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Hàm nb trên ​\(\left(-\infty;2\right)\)

d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)

Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)

e)TXĐ:D=R

Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)

​​\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)

Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)

\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)

Hàm đb trên \(\left(0;+\infty\right)\)

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

28 tháng 5 2018

Đáp án A

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Nhìn vào đồ thị, ta thấy:

a) Hàm số \(y =  - 2x + 1\)nghịch biến trên \(\mathbb{R}\)

b) Hàm số \(y =  - \frac{1}{2}{x^2}\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\); nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)