K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Vì (d): y=ax+b // y=-3x+2011 nên

\(\left\{{}\begin{matrix}a=-3\\b\ne2011\end{matrix}\right.\)=> (d1): y=-3x+b

Vì (d1) đi qua A(1;1) nên:

\(-3+b=1\Leftrightarrow b=4\left(TM\right)\)

Vậy a=-3;b=4.

7 tháng 8 2019

yeuthanhs you nhavui

9 tháng 10 2019

a ) Để hàm số nghịch biến \(\Leftrightarrow\hept{\begin{cases}m< 0\\m\ne0\end{cases}\Leftrightarrow m< 0}\)

b ) Đồ thị hàm số đi qua điểm M (3 ; 2) nên ta có :
\(2=m.3+1\Leftrightarrow3m=1\Leftrightarrow m=\frac{1}{3}\)

Khi đó hàm số đã cho có dạng : \(y=\frac{1}{3}x+1\)

- Nếu \(x=0\Rightarrow y=1\) . Ta có điểm A ( 0;1) \(\in Oy\)

- Neus \(y=0;x=-3\) . Ta có điểm  B \(\left(-3;0\right)\in Ox\)

Đường thẳng đi qua 2 điểm A , B là đò thị của hàm số \(y=\frac{1}{3}x+1\)

O A B y x -3 1

c ) Gọi điểm  \(N\left(x_o;y_0\right)\) là điểm cố định mà với mọi giá trị của m 

Khi đó ta có : \(mx_o+1=y_o\) , vơi mọi m 

\(\Leftrightarrow mx_o+\left(1-y_0\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x_0=0\\1-y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=1\end{cases}}}\)

Vậy N ( 0 ; 1) là điểm cố định của đồ thị hàm số đã cho

18 tháng 12 2016

a) Để hàm số nghịch biến \(\Leftrightarrow\begin{cases}m< 0\\m\ne0\end{cases}\)\(\Leftrightarrow m< 0\)

b)Đồ thị hàm số đi qua điểm M(3;2) nên ta có:

\(2=m\cdot3+1\Leftrightarrow3m=1\Leftrightarrow m=\frac{1}{3}\)

Khi đó hàm só đã xho có dạng \(y=\frac{1}{3}x+1\)

-Nếu \(x=0\Rightarrow y=1\) . Ta có điểm \(A\left(0;1\right)\in Oy\)

-Nếu \(y=0\Rightarrow x=-3\).Ta có điểm \(B\left(-3;0\right)\in Ox\)

Đường thẳng đi qua 2 điểm A,B là đồ thị của hàm số \(y=\frac{1}{3}x+1\)

x O y 1 -3 A B

c) Gọi diểm \(N\left(x_0;y_0\right)\) là điểm cố định mà với mọi giá trị của m

Khi đó ta có: \(mx_0+1=y_0\) , với mọi m

\(\Leftrightarrow mx_0+\left(1-y_0\right)=0\)

\(\Leftrightarrow\begin{cases}x_0=0\\1-y_0=0\end{cases}\)\(\Leftrightarrow\begin{cases}x_o=0\\y_0=1\end{cases}\)

Vậy \(N\left(0;1\right)\) là điểm cố dịnh của đồ thị hàm số đã cho

12 tháng 6 2018

a )

Đồ thị parapol P đi qua điểm M khi a là nghiệm của phương trình :

\(2=a.2^2\)

\(\Leftrightarrow4a=2\)

\(\Leftrightarrow a=\dfrac{1}{2}\)

26 tháng 7 2015

                 phuong trinh duong thang ABco dang y=ax+b

           Duong thang y=ax+b di qua A(2;5)

\(\Leftrightarrow\)5=2a+b   \(\Rightarrow\)b=5-2a       (1)

           Duong thang y=ax+b di qua B(-2;-3)

\(\Leftrightarrow\)-3=-2a+b     \(\Rightarrow\)b=-3+2a    (2)

Tu (1)(2)

\(\Rightarrow\)5-2a=-3+2a

\(\Rightarrow\)a=2

thay a=2 vao(1)

\(\Rightarrow\)b=5-4=1

\(\Rightarrow\)phuong trinh duong thang AB co dang y=2x+1

Bài 1:

a: Để hàm số đồng biến thì a>0

Để hàm số nghịch biến thì a<0

b: Để hai đường vuôg góc thì a*1=-1

=>a=-1

Bài 2:

PTHĐGĐ là:

1/4x^2=2x+m-4

=>x^2=8x+4m-16

=>x^2-8x-4m+16=0

Δ=(-8)^2-4(-4m+16)

=64+16m-64=16m

Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0

=>m>0

13 tháng 4 2016

b nao giai ho mk vs nhá

13 tháng 4 2016

b, A có x=-1 => y= -3 => A(-1;-3)

B có x=-1/2 => y = -3/4 =>B(-1/2;-3/4)

15 tháng 12 2019

a)Vì ĐTHS đi qua A(-2;6) nên

Suy ra x=-2 , y=6

Thay x=-2 và y=6 vào hàm số y=ax-4

Ta được a=5

b) Tự vẽ

6 tháng 12 2019

xxx