K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(P=x^2+2y+2xy-6x-8y-2028\\ =x^2+y^2+y^2+2xy-6x-8y+2028\\ =\left(x^2+2xy+y^2\right)+y^2-6x-8y+2028\\ =\left(x+y\right)^2+y^2-6x-6y-2y+2028\\ =x+y^2+\left(-6-6y\right)+y^2-2y+1+2027\\ =\left(x+y\right)^2-6\left(x+y\right)+\left(y-1\right)^2+2027\\ =\left(x+y\right)^2-2\left(x+y\right)^3+9+\left(y-1\right)^2+2018\)

\(=\left[\left(x+y\right)^2-2\left(x+y\right)-3+9\right]+9+\left(y-1\right)^2+2018\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2018\\ \forall x,y\left(x-y-3\right)^2\ge0;\left(y-1\right)^2\ge0\\ =>D=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

Vậy giá trị nhỏ nhất của P=2018

Xấu ''='' xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+1-3=0\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

P = x2 + 2y2 + 2xy – 6x – 8y + 2028

P = (x2 + y2 + 2xy) – 6(x + y) + 9 + y2 – 2y + 1 + 2018

P = (x + y – 3)2 + (y – 1)2 + 2018 \(\ge\) 2018

=> Giá trị nhỏ nhất của P = 2018 khi x = 2; y = 1

23 tháng 5 2019

P=x2+2y2+2xy-6x-8y+2028

=x2+2xy+y2+y2-8y+x2-6x-x2+2028

=(x2+2xy+y2)+(y2-8y+16)+(x2-6x+9)-x2+2028-16-9

=(x-y)2+(y-4)2+(x-3)2-x2+2003\(\ge2003\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-4\right)^2\ge0\\\left(x-3\right)^2\ge0\\x^2\ge0\end{matrix}\right.\) nên:

Để P=2003 thì :

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-3=0\\y-4=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=4\\x=0\end{matrix}\right.\)

Vậy min P=2003\(\Leftrightarrow\left(x=y\right)\in\left\{0;4;3\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$

23 tháng 5 2018

a)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right).3\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)

23 tháng 5 2018

a/ chtt

b/ \(P=x^2+2y^2+2xy-6x-8y+2028\)

\(=\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2018\)

\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2018\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy....

11 tháng 5 2018

a)

b) P = x2 + 2y2 + 2xy – 6x – 8y + 2028

P = (x2 + y2 + 2xy) – 6(x + y) + 9 + y2 – 2y + 1 + 2018

P = (x + y – 3)2 + (y – 1)2 + 2018 2018

=> Giá trị nhỏ nhất của P = 2018 khi x = 2; y = 1

11 tháng 5 2018

Cách khác câu a

\(a^2+b^2+c^2\ge\dfrac{3}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

=>đpcm

18 tháng 4 2022

a

 

18 tháng 4 2022

à lộn

 

23 tháng 1 2017

Giải :(x2+2xy+y2)+y2-6x-8y+2024=(x+y)2-2(x+y)3+y2-2y+2024

=(x+y-3)2+(y2-2y+1)+2014=(x+y-3)2+(y-1)2+2014 >=2014

vì (x+y-3)2;(y-1)2>=0 với mọi x;y

nên Pmin=2014khi y=1;x=2

23 tháng 1 2017

MinP=2024 nha!

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)