K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right).3\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\dfrac{3}{4}\)

23 tháng 5 2018

a/ chtt

b/ \(P=x^2+2y^2+2xy-6x-8y+2028\)

\(=\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2018\)

\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2018\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy....

11 tháng 5 2018

a)

b) P = x2 + 2y2 + 2xy – 6x – 8y + 2028

P = (x2 + y2 + 2xy) – 6(x + y) + 9 + y2 – 2y + 1 + 2018

P = (x + y – 3)2 + (y – 1)2 + 2018 2018

=> Giá trị nhỏ nhất của P = 2018 khi x = 2; y = 1

11 tháng 5 2018

Cách khác câu a

\(a^2+b^2+c^2\ge\dfrac{3}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

=>đpcm

24 tháng 5 2018

Khởi động nhẹ nhàng thôi:v

\(a^2+b^2+c^2\ge\dfrac{3}{4}\)

\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)

\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)

\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)

\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)

24 tháng 5 2018

a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

Ta có : a2 + b2 ≥ 2ab ( 1)

b2 + c2 ≥ 2bc ( 2)

c2 + a2 ≥ 2ac ( 3)

Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)

⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2

⇔ a2 + b2 + c2\(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

C2. Áp dụng BĐT Bunhiacopxki , ta có :

( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2

⇔ a2 + b2 + c2 \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)

Có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)

Tương tự cũng có : \(b^2+\frac{1}{4}\ge b ; c^2+\frac{1}{4}\ge c\)

Cộng vế với vế các bất đẳng thức cùng chiều ta đươc:

\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)( Vì a + b + c = \(\frac{3}{2}\) nên \(a^2+b^2+c^2\ge\frac{3}{4}\))

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{2}\)

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

Theo BĐT Cauchy ta có :

\(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)

4 tháng 5 2018

a, Đặt \(x=\dfrac{1}{2}+a\) ; \(y=\dfrac{1}{2}+b;z=\dfrac{1}{2}+c\)

Do a + b + c = 3/2 => x + y + z = 0

Ta có: \(a^2+b^2+c^2=\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2+\left(\dfrac{1}{2}+z\right)^2\)

\(=\left(\dfrac{1}{4}+x+x^2\right)+\left(\dfrac{1}{4}+y+y^2\right)+\left(\dfrac{1}{4}+z+z^2\right)\)

\(=\dfrac{3}{4}+\left(x+y+z\right)+x^2+y^2+z^2\ge\dfrac{3}{4}\)(đpcm)

P/S Nếu không muốn cm BĐT đó thì làm cách này cx đc

29 tháng 5 2021

b) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\left(a,b,c\ne0\right)\).

Áp dụng bất đẳng thức Cô-si cho 2 số dương (vì \(a,b,c\ne0\)), ta được:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\Leftrightarrow a^2c^2=b^4\Leftrightarrow b^2=ac\).

Chứng minh tương tự, ta dược:

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow c^2=ab\)
Chứng minh tương tự, ta được:

\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a^2=bc\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\).

\(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\).

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a^2=bc\\b^2=ca\\c^2=ab\end{cases}}\Leftrightarrow a=b=c\left(a,b,c\ne0\right)\).

Vậy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\).

29 tháng 5 2021

\(A=\frac{x^2+y^2}{x^2+2xy+y^2}=\frac{x^2+y^2}{\left(x+y\right)^2}=\frac{2\left(x^2+y^2\right)}{2\left(x+y\right)^2}\left(ĐKXĐ:x\ne-y\right)\).

Áp dụng bất đẳng thức Cô-si cho 2 số không âm, ta được:

\(x^2+y^2\ge2\sqrt{x^2.y^2}=2xy\).

\(\Leftrightarrow x^2+y^2+x^2+y^2\ge2xy+x^2+y^2\).

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\).

Do đó

\(A\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)^2}=\frac{1}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow x=y\).

Vậy \(minA=\frac{1}{2}\Leftrightarrow x=y\).