Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)^2+2\ge2\)
\(B=-\left(x+2\right)^2+7\le7\)
\(C=2\left(x+1\right)^2+3\ge3\)
\(D=\left(x-1\right)^2+2\left(y+3\right)^2+\left(3z+1\right)^2+4\ge4\)
\(E=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)
\(F=\left(x-2\right)^2+\left(y+1\right)^2\ge0\)
\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(H=-x^2+7x+74=-\left(x-\frac{7}{2}\right)^2+\frac{345}{4}\le\frac{345}{4}\)
có thể trả lời đầy đủ giúp mình câu b, c, d, h được ko ??????????
\(B=1+5y-y^2=-\left(y^2-5y-1\right)\)
\(=-\left(y^2-2.\frac{5}{2}x+\frac{25}{4}-\frac{29}{4}\right)\)
\(=-\left[\left(y-\frac{5}{2}\right)^2-\frac{29}{4}\right]\)
\(=-\left(y-\frac{5}{2}\right)^2+\frac{29}{4}\le\frac{29}{4}\)
\(C=4x-x^2+1=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left[\left(x-2\right)^2-5\right]\)
\(=-\left(x-2\right)^2+5\le5\)
a) \(A=x^2-20x+101\)
\(=x^2-2.x.10+10^2+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu = xảy ra khi \(\left(x-10\right)^2=0\)
=> \(x-10=0\)
=> \(x=10\)
Vậy A min = 1 tại x = 10
b) \(B=4a^2+4a+2\)
\(=\left(2a\right)^2+2.2a.1+1^2+1\)
\(=\left(2a+1\right)^2+1\ge1\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\)
=> \(2x+1=0\)
=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
Vậy B min = 1 tại \(x=\frac{1}{2}\)
c) Mình không biết làm mong bạn thông cảm
d)\(D=x^2+2y^2-2xy-4y+5\)
\(=x^2-2xy+y^2+y^2-2.y.2+2^2+1\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(y-2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}y-2=0\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x-2=0\end{cases}}\hept{\begin{cases}y=2\\x=2\end{cases}}\)
Vậy D min = 1 tại x = y = 2
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
\(A=x^2+3x+7\)
\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)
\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)
\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)
Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)
Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0