K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2014

Nhóm thành tích
 \(A = (x+1)(5x^2-4x+4)/ x^2\)

A=0 => x= -1  Hoặc
            \( 5x^2-4x+4=0\)  
            Nhưng  \( 5x^2-4x+4>0\)  Luôn > 0 vì
                                 Nhóm   \( 5x^2-4x+4 = 5 (x-2/5)^2 + 16/5\) luôn >0 
A>0 => x+1 > 0 => x>-1  Và
             \( 5x^2-4x+4>0\)  Luôn > 0 Đã chứng minh ở trên
A<0 thì x<-1

20 tháng 6 2016

a) \(X^2+5X< 0\)

<=> \(X\left(X+5\right)< 0\)

<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)

 TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)

Vậy \(-5< x< 0\)

29 tháng 6 2015

tách bài 2, bài 3 riêng ra rồi mình làm cho. mỗi câu này đều dài, bạn để cả đống thế này k ai làm cho đâu. khi nào tách ra thì gửi link mình làm hết cho nha

18 tháng 7 2016

4a) 

Ta có : 

x2 + 5x > 0 

(=) x2 > 0 và 5x > 0 

muốn  x2  > 0 (=) x \(\in\)  |R (1)

Lại có : 5x > 0 (=) x > 0  (2)

Từ (1) và (2) 

=) muốn x + 5x > 0 thì x phải > 0  

4b) 

Ta có : 

3 . ( 2x + 3 ) . ( 3x - 5 ) > 0 

TH1 : 3 . ( 2x + 3 ) > 0 

=) 2x + 3 > 0 

=) 2x > -3

=) x > \(\frac{-3}{2}\)

TH2 : 3x - 5 > 0 

=) 3x > 5 

=) x > \(\frac{5}{3}\)

Vậy \(\frac{-3}{2}\)  < x < \(\frac{5}{3}\)  thì 3 . ( 2x + 3 ) . ( 3x - 5 ) > 0 

18 tháng 7 2016

thanks bạn

9 tháng 8 2016

Giúp mk nhé tối mk phải nộp rồi.

13 tháng 8 2016

a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong  . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3

14 tháng 8 2016

bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức

a: (x-1)(x-2)>0

=>x-2>0 hoặc x-1<0

=>x>2 hoặc x<1

b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)

=>(x+1)(x-4)<0

=>-1<x<4

c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)

=>x-3/x-9<0

=>3<x<9

27 tháng 9 2024

c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)

⇒  \(\dfrac{5}{x}\) - 1 < 0 ⇒  \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)

Lập bảng ta có:

\(x\)                 0                                  5
\(x-5\)        +       |              +                   0     -
\(x\)        -       0             +                    |       +
\(\dfrac{x-5}{x}\)        -      ||              +                    0      -

Theo bảng trên ta có  \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)

Vậy tập hợp nghiệm của bất phương trình đã cho là:

S = (- ∞; 0) \(\cup\) (5 ; + ∞)