K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui

12 tháng 1 2019

🤦‍♀️🤦‍♀️

23 tháng 2 2019

Để \(\left(x^2-1\right)\left(x^2-16\right)< 0\) thì 

\(\hept{\begin{cases}x^2-1< 0\\x^2-16>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>16\end{cases}}\Leftrightarrow-4< x< -1\) hoặc \(\hept{\begin{cases}x< 1\\x>4\end{cases}}\) (loại)

Vậy \(-4< x< -1\)

29 tháng 5 2016

\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)

Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)

        \(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)

        \(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)

Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau : 

      X                                 1
       x-1                 -                 0                      +
       2x-2                 -                0                      +
      3x-3                 -                0                      +

 

Xét khoảng \(x< 1\) ta có :

(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )

Xét khoảng \(x>0\) ta có : 

(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )

Vậy \(x=0\) và \(x=2\) thỏa mãn

 

22 tháng 10 2019

Băng Băng 2k6 giúp vs