Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)
Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)
\(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)
\(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)
Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau :
X | 1 |
x-1 | - 0 + |
2x-2 | - 0 + |
3x-3 | - 0 + |
Xét khoảng \(x< 1\) ta có :
(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )
Xét khoảng \(x>0\) ta có :
(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )
Vậy \(x=0\) và \(x=2\) thỏa mãn