Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm đc mỗi GTNN, cách tìm GTLN chưa chắc chắn lắm nên mk ko lm nha :D
1/ \(A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
2/ \(B=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(1-\sqrt{x-1}\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)
Bài 3:
Áp dụng BĐT Bunhiacopxky ta có:
\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)
\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)
\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)
\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)
Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)
\(A_{\max}=5\Leftrightarrow x=y=1\)
Bài 4:
Lời giải:
\(B=\sqrt{x-1}+\sqrt{5-x}\)
\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)
Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)
Mặt khác \(B\geq 0\)
Kết hợp cả hai điều trên suy ra \(B\geq 2\)
Vậy \(B_{\min}=2\).
Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)
---------------------------------------
\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)
\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)
Vì \(x^2\geq 0\forall x\in\mathbb{R}\)
\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)
Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)
Vậy \(A_{\min}=2\Leftrightarrow x=0\)
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
\(A=\sqrt{1-x}+\sqrt{x+1}\)
\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)
Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)
\(A^2\le4\)
\(A\le2\)
\(A_{max}=2\Leftrightarrow x=0\)
E ms tìm dc MAX thôi ah
ĐKXĐ: ....
a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)
\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)
\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)
\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)
\(\Rightarrow-5\le A\le5\)
\(A_{max}=5\) khi \(x=y=1\)
\(A_{min}=-5\) khi \(x=y=-1\)