Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)