Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 32 < 2n > 128
<=> 25 < 2n > 27
<=> n = 8 ; 9 ; 10...
b) 2 . 16 < 2n > 4
<=> 21 . 24 < 2n > 4
<=> 25 < 2n > 4
<=> n = 5 ; 6 ; 7 ;...
c) ( 22 : 4 ) . 2n = 4
<=> 1 . 2n = 4
<=> 2n = 4
<=> 2n = 22
<=> n = 2
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
1/Ta có(ax2+by2+cz2)/2000= (ax2+by2+cz2)(a+b+c)=
=a2x2+abx2+acx2+aby2+b2y2+bcy2+acz2+bc...
=(abx2+aby2+bcy2+bcz2+acx2+acz2)+(a2x2... (1)
từ ax + by + cz = 0
=> a2x2+b2y2+c2z2+2(abxy+bcyz+acxz)=0
=> a2x2+b2y2+c2z2= - 2(abxy+bcyz+acxz) (2)
Thay (2) vào (1) có
(ax2+by2+cz2)/2000=
=(abx2+aby2+bcy2+bcz2+acx2+acz2)-2(abx...
=ab(x-y)2+bc(y-z)2+ca(z-x)2
=>dpcm
2/Xem bài 5 trước
3/ a2 + b2 + (a - b)2 = c2 + d2 + (c - d)2.
=> a4+b4+(a-b)4+2[a2b2+a2(a-b)2+b2(a-b)2]=
=c4+d4+(c-d)4+2[c2d2+c2(c-d)2+d2(c-d)2...
<=>a4+b4+(a-b)4+2[a2b2+(a2+b2)(a-b)2]
=c4+d4+(c-d)4+2[c2d2+(c2+d2)(c-d)2 (1)
a2 + b2 + (a - b)2 = c2 + d2 + (c - d)2.
=> 2(a2+b2-ab) =2(c2+d2-cd)
=>(a2+b2-ab) =(c2+d2-cd)
=>(a2+b2)2+a2b2-2ab(a2+b2)=(c2+d2)2+c2...
=>a2b2+(a2+b2)(a2+b2-2ab)=c2d2+(c2+d2)...
=>a2b2+(a2+b2)(a-b)2=c2d2+(c2+d2)(c-d)... (2)
từ (1) (2) => dpcm
4/B = a4 + b4 + c4=(a2+b2+c2)^2-2(a2b2+b2c2+c2a2)
B= 14^2 -2(a2b2+b2c2+c2a2) (1)
từ a+b+c=0 =>a= -(b+c)
=>a2=b2+c2+2bc
=> a2-b2-c2=2bc
=> a4+b4+c4-2a2b2-2a2c2+2b2c2=4b2c2
=>B=a4+b4+c4=2(a2b2+a2c2+b2c2) (2)
(1) (2) => 2B= 14^2 =196=>B=98
5/ a3+b3+c3-3abc= (a+b)^3-3ab(a+b)+c^3-3abc
=(a+b)^3+c^3-3ab(a+b+c)
=(a+b+c)[(a+b)^2+c^2-(a+b)c-3ab]
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0
=>a+b+c=0 (1) hoặc a^2+b^2+c^2-ab-bc-ac=0 (2)
+nếu (1) xảy ra
=> a+b=-c;b+c=-a;c+a=-b
=>A =[(b+a)/b]x[(c+b)/c]x[(a+c)/a]=-abc/abc=...
+Nếu (2) xảy ra =>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
=> (a-b)^2+(b-c)^2+(c-a)^2=0
=>a=b=c
=>A=2x2x2=8
a) \(\frac{2^3}{2^4}=\frac{2^3}{2^3.2}=\frac{1}{2}\)
b) \(\frac{3^5}{3^4}=\frac{3^4.3}{3^4}=3\)
c) \(\frac{4^7}{4^{10}}=\frac{4^7}{4^7.4^3}=\frac{1}{4^3}=\frac{1}{64}\)
d) \(\frac{5^{11}}{5^8}=\frac{5^8.5^3}{5^8}=5^3=125\)
e) \(\frac{6^2}{4^2}=\frac{2^2.3^2}{\left(2^2\right)^2}=\frac{3^2}{2^2}=\frac{9}{4}\)
a) \(\frac{2^3}{2^4}\)= \(\frac{8}{16}\)= \(\frac{1}{2}\)
b) \(\frac{3^5}{3^4}\)= \(\frac{243}{81}\)= \(\frac{3}{1}\)= 3