Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4a=5b\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{b-a}{4-5}=\dfrac{27}{-1}=-27\\ \Leftrightarrow\left\{{}\begin{matrix}a=-135\\b=-108\end{matrix}\right.\\ 2,\dfrac{1}{3}x=\dfrac{1}{2}y=\dfrac{1}{5}z\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}=\dfrac{x+2y-z}{3+4-5}=\dfrac{8}{2}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=12\\y=8\\z=20\end{matrix}\right.\\ 3,\dfrac{1}{3}a=\dfrac{1}{2}b;\dfrac{1}{5}a=\dfrac{1}{7}c\\ \Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{184}{46}=4\\ \Leftrightarrow\left\{{}\begin{matrix}a=60\\b=40\\c=84\end{matrix}\right.\)
Vì a,b tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{2}\) suy ra \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{15}=\frac{b}{10}\) (1)
a,c tỉ lệ nghịch với \(\frac{1}{5};\frac{1}{7}\) suy ra \(\frac{a}{5}=\frac{c}{7}\Rightarrow\frac{a}{15}=\frac{c}{21}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\). Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}=\frac{a+b+c}{15+10+21}=\frac{184}{46}=4\)
\(\Rightarrow\begin{cases}\frac{a}{15}=4\Rightarrow a=4\cdot15=60\\\frac{b}{10}=4\Rightarrow b=4\cdot10=40\\\frac{c}{21}=4\Rightarrow c=4\cdot21=84\end{cases}\)
\(\Rightarrow M=a^2+b^2-c^2=60^2+40^2-84^2=-1856\)
Theo bài ra, ta có:
\(\frac{1}{2}a=\frac{1}{5}b=\frac{1}{7}c\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{2c}{14}=\frac{a+b-2c}{2+5-14}=\frac{70}{-7}=-10\)
\(\Rightarrow\hept{\begin{cases}a=-10.2=-20\\b=-10.5=-50\\c=-10.7=-70\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{8}=\dfrac{a+b+c}{15+10+8}=\dfrac{11}{33}=\dfrac{1}{3}\)
Do đó: a=5; b=10/3; c=8/3