Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(1^3 + 2^3=1+8=9=3^2\)
b) \(1^3+2^3+3^3=1+8+27=36=6^2\)
c ) \(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2\)
moi tong tren deu la so chinh phuong
a) \(A=2+2^2+2^3+...+2^{2019}\)
\(\Rightarrow2A=2^2+2^3+...+2^{2020}\)
\(\Rightarrow2A-A=\left(2^2+...+2^{2020}\right)-\left(2+...+2^{2019}\right)\)
\(\Rightarrow A=2^{2020}-2\)
Ta có: \(A+2=2^{x+10}\)
\(\Leftrightarrow2^{2020}-2+2=2^{x+10}\)
\(\Leftrightarrow2^{2020}=2^{x+10}\)
\(\Leftrightarrow2020=x+10\)
\(\Leftrightarrow x=2010\)
b) Ta có: \(A+2=2^{2020}=\left(2^{1010}\right)^2\)là số chính phương
XÉT:\(A=2+2^2+2^3+...+2^{2019}\)
\(\Leftrightarrow2A=2^2+2^3+...+2^{2019}+2^{2020}\)
\(\Leftrightarrow2A-A=2^{2020}-2\)
\(\Leftrightarrow A=2^{2020}-2\)
\(\Rightarrow A+2=2^{2020}-2+2=2^{2020}\)LÀ SỐ CHÍNH PHƯƠNG
MÀ\(a+2=2^{x+10}\)
\(\Leftrightarrow2^{x+10}=2^{2020}\)
\(\Leftrightarrow x+10=2020\Leftrightarrow x=2010\)
a) Giải:
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Ta có A= ( ...0)+(...0)+(...0)+8= (...8). vậy A có tận cùng là 8 . Do số chính phương ko có tận cùng là 8. Suy ra A không phải là số chính phương.(đpcm)
1)
987 = 9.102 + 8.101 + 7.100
2564 = 2.103 + 5.102 + 6.101 + 4.100
abcde = a.104 + b.103 + c.102 + d.101 + e.100
2)
a) n = 1 b ) n = 0
3)
a) 13 + 23 = 1 + 8 = 9 = 32
b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62
c ) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102