Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(UCLN\left(a,b\right)\le a,b\)\(\Rightarrow UCLN\left(a,b\right)\le a+b\) điều này mâu thuẫn với giả thiết
\(\hept{\begin{cases}a+b=8\\UCLN\left(a,b\right)=9\end{cases}}\) vậy không tồn tại hai số a,b thỏa mãn
b. ta có \(UCLN\left(a,b\right)=6\Rightarrow\hept{\begin{cases}a=6k\\b=6h\end{cases}}\)với h,k nguyên tố cùng nhau
\(a.b=36h.k=720\Leftrightarrow hk=20=1.2^2.5\) nên \(\left(h,k\right)=\left(1,20\right)\text{ hoặc (4,5)}\)
vậy tương ứng ta có hai bộ số là 6,120 và 24,30 thỏa mãn đề bài
a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n
Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3
Với m = 1, n = 6 thì a = 6, b = 36
Với m = 2, n = 3 thì a = 12, b = 18
Vậy (a;b) là (6;36); (12;18)
b, Vì p là số nguyên tố nên ta xét các trường hợp của p
Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).
Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).
Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với k ∈ N*.
Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).
Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).
Kết luận. p = 3
a = [8 + (-6)] : 2 = 1
b = [(-6) - 8] : 2 = -7
\(a=\left[8+\left(-6\right)\right]:2=1\\ b=\left[\left(-6\right)-8\right]:2=-7\)