K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

Theo định lí bơ du 

Để đa thức \(f\left(x\right)=x^3-5x^2+12x+a\) chia hết cho x-3 thì \(f\left(3\right)=0\)

Ta có : \(f\left(3\right)=3^3-5.3^2+12.3+a=0\)

\(\Rightarrow27-45+36+a=0\)

\(\Rightarrow18+a=0\Rightarrow a=-18\)

1 tháng 8 2016

x -5x +a 3 2 +12x x-3 x -x 2 3 +3x 2 -2x 2 +12x +a -2x 2x -6x 2 6x +a +6 -6x +18 a+18

Vì đây là phép chia hết nên dư \(a+18=0\Rightarrow a=-18\)

19 tháng 8 2018

\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)

\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)

Đồng nhất 2 vế có

\(x^3=cx^3\Rightarrow c=1\)

\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)

\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)

\(b=d\Rightarrow b=1\)

2/ Câu B tương tự nha bạn

19 tháng 8 2018

MK làm theo phương pháp hệ số bất định

a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1

Hệ số của thương là : x3:x2=x

Gọi đa thức thương là : x + c

\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)

\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)

\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)

Theo pp hệ số bất định

\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)

Vậy a = 2 ; b = 1

Câu b tương tự nhé

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

25 tháng 9 2021

Mình đang cần gấp

22 tháng 12 2017

a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4

b) Thực hiện phép chia ta có:

\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)

Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.

c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)