Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài khá dễ nhé bạn :
\(a^2+10a+25+1939=n^2\Rightarrow\left(a+5\right)^2+1939=n^2\Rightarrow\left(a+5-n\right)\left(a+5+n\right)=1939\)
\(\left(a+5-n\right)\left(a+5+n\right)=1.1939=7.277\)
Ta có 2 TH ( vì a+5+n > a+5 -n ) sau :
\(\hept{\begin{cases}a+5-n=1\\a+5+n=1939\end{cases}}\)và \(\hept{\begin{cases}a+5-n=7\\a+5+n=277\end{cases}}\)
TH1:
\(2a+10=1940\Rightarrow a=\frac{1940-10}{2}=965\)( loại khi thử lại )
TH2:
\(2a+10=284\Rightarrow a=137\)(loại khi thử lại )
Suy chẳng có số nào thõa mãn đề bài trên
giả sử a^2+10a+1964=n^2 --> (a+5)^2+1939 =n^2 --> n^2-(a+5)^2=1939
(n-a-5)(n+a+5) =1939 =1.1939=7.277
n-a-5=1 (*) và n+a+5=1939 ) (**) hoặc n-a-5=7 (***) và n+a+5=277 (****)
Lấy (**) trừ (*) ta được 2a+10=1938, suy ra a1=964
trường hợp 2: lấy (****)-(***) ta được 2a+10=270; suy ra a2=130
Vậy có 2 giá trị a thỏa mãn là 130 và 964
Nguồn
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.