K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

a) P(x)=4x2-6x+a; Q(x)=x-3

Lấy P(x):Q(x)=4x-6 dư a+30

Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30

b) P(x)=2x2+x+a; Q(x)=x+3

Lấy P(x):Q(x)=2x-7 dư a+21

Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21

c) P(x)=x3+ax2-4; Q(x)=x2+4x+4

Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12

Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3

⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)

⇒ a ϵ {4;6;2;8}

d) P(x)=2x2+ax+1; Q(x)=x-3

Lấy P(x):Q(x)=2x+a+6 dư 3a+19

Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3

e) P(x)=ax5+5x4-9; Q(x)=x-1

Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4

Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4

f) P(x)=6x3-x2-23x+a; Q(x)=2x+3

Lấy P(x):Q(x)=3x2-5x-4 dư a+12

Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12

g) P(x)=x3-6x2+ax-6 Q(x)=x-2

Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6

Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7

Bài h có a,b bạn xem lại đề

quy

đồng

cx

ko bt làm á

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

4 tháng 4 2020

a) (x^5 + 4x^3 - 6x^2) : 4x^2

= (x^5 : 4x^2) + (4x^3 : 4x^2) - (6x^2 : 4x^2)

= 1/4x^3 + x + 3/2

b) x(2x^2 - 3) - x^2(5x + 1) + x^2

= 2x^3 - 3x - 5x^3 - x^2 + x^2

= -3x^3 - 3x

c) (x - 2)^2 - (x - 1)(x + 1) - x(1 - x)

= x^2 - 4x + 4 - x^2 + 1 - x + x^2

<=> x^2 - 5x + 5

d) 1/2x^2(6x - 3) - x(x^2 + 1/2) + 1/2(x + 4)

\(\frac{x^2}{2}\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{x+4}{2}\)

\(\frac{x^2\left(6x-3\right)}{2}-x\left(x^2+\frac{1}{2}\right)+\frac{x+4}{2}\)

\(-x\left(x^2+\frac{1}{2}\right)+\frac{x^2\left(6x-3\right)+x+4}{2}\)

\(\frac{4x^3-3x^2+4}{2}\)

21 tháng 7 2018

Đây nữaHỏi đáp Toán

24 tháng 6 2017

a) Ta có : x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - (3x - 3) 

= x(x - 1) - 3(x - 1)

= (x - 1) (x - 3) 

24 tháng 6 2017

a) \(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

b) \(x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

c) \(x^2-x-6\)

\(=x^2-3x+2x-6\)

\(=x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x+2\right)\left(x-3\right)\)

d) \(x^4+1997x^2+1996x+1997\)

\(=x^4+x^2+1996x^2+1996x+1996+1\)

\(=\left(x^4+x^2+1\right)+\left(1996x^2+1996x+1996\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

e) \(x^2-2001\cdot2002\)( hình như sai sai)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

30 tháng 8 2020

a) x2( x - 1 ) - x + 1

= x2( x - 1 ) - ( x - 1 )

= ( x - 1 )( x2 - 1 )

= ( x - 1 )( x - 1 )( x + 1 )

= ( x - 1 )2( x + 1 )

b) ( a + b )3 - ( a - b )3

= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b( 3a2 + b )

c) 6x( x - 3 ) + 9 - 3x2

= 6x2 - 18x + 9 - 3x2

= 3x2 - 18x + 9

= 3( x2 - 6x + 3 )

d) x( x - y ) - 5x + 5y

= x( x - y ) - ( 5x - 5y )

= x( x - y ) - 5( x - y )

= ( x - y )( x - 5 )

e) 3( x + 4 ) - x2 - 4x

= 3( x + 4 ) - ( x2 + 4x )

= 3( x + 4 ) - x( x + 4 )

= ( x + 4 )( 3 - x )

f) x2 + 4x - y2 + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

g) x2 + 5x

= x( x + 5 )

h) -x2 + 2x + 2y + y2

= ( y2 - x2 ) + ( 2x + 2y )

= ( y - x )( y + x ) + 2( x + y )

= ( x + y )( y - x + 2 )

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)