Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Áp dụng định lí Bezout:
\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)
\(\Rightarrow1+6+7-a+b=0\)
\(\Rightarrow a-b=14\left(1\right)\)
\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)
\(\Rightarrow16+48+28-2a+b=12\)
\(\Rightarrow2a-b=80\left(2\right)\)
-Từ (1) và (2) suy ra: \(a=66;b=52\)
\(f\left(x\right)\)⋮\(g\left(x\right)\)⇔\(f\left(x\right)\)⋮\(x-2\)và⋮\(x+2\)
⇒ \(\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}2a+b=-16\\-2a+b=-16\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}a=0\\b=-16\end{matrix}\right.\)
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
dùng bezout đi
thay x=2;-2 ra hpt
Giả sử : x2 - 4 = 0 \(\Rightarrow\)x2 - 22 = 0\(\Rightarrow\)( x - 2 )( x + 2 ) = 0 \(\Rightarrow\)x = 2 và x = - 2 nên x có 2 nghiêm là x = 2 và x = - 2
Ta có :
f( 2 ) = 24 + 2a + b = 16 + 2a + b
f( - 2 ) = ( - 2 )4 - 2a + b = 16 - 2a + b
Để f( x ) \(⋮\)g( x ) thì 16 + 2a + b = 0 ( 1 )và 16 - 2a + b = 0 ( 2 )
Ta lấy ( 1 ) - ( 2 ) ta được : 32 + 2b = 0
\(\Rightarrow\)2b = - 32
\(\Rightarrow\)b = - 16
Thay b = - 16 vào ( 2 ) ta được :
16 - 2a - 16 = 0
\(\Rightarrow\)- 2a = 0
\(\Rightarrow\)a = 0
Vậy : a = 0 và b = - 16