K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

a , Ta có: \(a+b=10\Rightarrow a=10-b\)

\(a+b=10\Rightarrow\left(a+b\right)^2=100\)

\(\Leftrightarrow a^2+2ab+b^2=100\)

\(\Leftrightarrow2ab=100-\left(a^2+b^2\right)=100-52=48\Rightarrow ab=24\)\(\Leftrightarrow\left(10-b\right)b=24\Leftrightarrow10b+b^2-24=0\)

\(\Leftrightarrow b^2+10b+25-49=0\)

\(\Leftrightarrow\left(b+5\right)^2=49\Rightarrow\left[{}\begin{matrix}b+5=7\\b+5=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=-12\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=8\\a=-2\end{matrix}\right.\)b, ta có:

\(\left(x+y\right)=1\Rightarrow\left(x+y\right)^3=1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Leftrightarrow x^3+3xy\left(x+y\right)+y^3=1\)

\(\Leftrightarrow x^3+3xy+y^3=1\)

c, \(a+b=13\Rightarrow\left(a+b\right)^2=169\)

\(\Leftrightarrow a^2+2ab+b^2=169\Rightarrow a^2+b^2=169-2ab=169-2.9=151\)\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2+b^2+ab\right)=13.\left(151+9\right)=2080\)

27 tháng 6 2017

\(d,x+y=7\Rightarrow\left(x+y\right)^2=49\)

\(\Leftrightarrow x^2+2xy+y^2=49\Rightarrow2xy=49-\left(x^2+y^2\right)=16\Rightarrow xy=8\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=7.\left(33-8\right)=175\)

14 tháng 9 2020

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

14 tháng 9 2020

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17

6 tháng 10 2019

a) Ta có: A = x3 + y3 + 3xy = (x + y)(x2 - xy + y2) + 3xy = 1. (x2 - xy + y2) + 3xy = x2 - xy + y2 + 3xy = x2 + 2xy + y2 = (x + y)2 = 12 = 1

b)Ta có: B = x3 - y3 - 3xy = (x - y)(x2 + xy + y2) - 3xy = 1. (x2 + xy + y2) - 3xy = x2 + xy + y2 - 3xy = x2 - 2xy + y2 = (x - y)2 = 12 = 1

d) Ta có : D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)

=> D = (x + y)(x2 - xy + y2) + 3xy(x2 + 2xy + y2) -  6x2y2 + 6x2y2

=> D = x2 - xy + y2 + 3xy(x + y)2 

=> D = x2 - xy + y2 + 3xy.12

=> D = x2 + 2xy + y2

=> D = (x + y)2 = 12 = 1

6 tháng 10 2019

a) \(A=x^3+y^3+3xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy=x^2+2xy+y^2\)

\(=\left(x+y\right)^2=1^2=1\)

b) \(B=x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2\)

\(=\left(x-y\right)^2=1^2=1\)

19 tháng 8 2020

Bài 1: 

a) (x+y)2=92=81

=> x2+2xy+y2=81

=> x2+2.14+y2=81

=> x2+y2=53

=> x2-2xy+y2=81-2.14=25

=> (x-y)2=25

=> x-y=5 hoặc x-y=-5

b) Câu a đã tính được x2+y2=53

c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351

Bài 2: 

Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=1

\(\Rightarrow1^2-4.1+1=-2\)

Bài 3: 

Ta có: (x+y)3=x3+3x2y+3xy2+y3 

= x3+y3+3xy(x+y)

Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1

Bài 4: 

Ta có: \(\left(x+y\right)^2=4^2=16\)

\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)

\(\Rightarrow2xy=6\Rightarrow xy=3\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)

\(=4.7=28\)

Bài 5: 

Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)

Mấy bài này đầu hè làm hết rồi:))

19 tháng 8 2020

Bài 1:

a) \(xy=14\Rightarrow x=\frac{14}{y}\)

Thay vào: \(\frac{14}{y}+y=9\)

\(\Leftrightarrow y^2+14-9y=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)

+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)

b) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^2=81\)

\(\Leftrightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)

c) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^3=9^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)

\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)

\(x^2+y^2+2xy\)

\(=10+2.2\)

\(=14\)

\(\Rightarrow\left(x+y\right)^2=14\)

\(\Rightarrow x+y=\sqrt{14}\)

1 tháng 8 2016

(x-y)2 = x2 - 2xy +y2 = 10 -4 = 6

x-y =\(\sqrt{6}\)

x2 -y2 =(x+y)(x-y) = \(\sqrt{14.6}\)\(\sqrt{84}\)

10 tháng 8 2017

biết chết liền

10 tháng 8 2017

trả lời giúp đi