Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m;n thuộc N* nên 2^n-1 < 2^n+1 2 đơn vị => thử 3;5 5;7 11;13
được thì chọn (y)
Đặt m=n+q(q€N)
=> 2n+q - 2n = 2016 => 2n(2q - 1) = 2016 = 25 x 63. Vì 2q - 1 không chia hết cho 2 nên 2n = 25 và 2q = 64 = 26 => n = 5 và m= 6+5=11
Ta có : 2016 > 0 mà 2m - 2n = 2016 => 2m > 2n => m > n
=> m = n + x ( x thuộc N)
Thay vào đề ta có :
2n+x - 2n = 2016
2n . 2x - 2n . 1 = 2016
2n( 2x - 1) = 2016
2n( 2x -1) = 25 . 32 . 7
=> 2n = 25 và 2x -1 = 32 . 7
=> n = 5 và 2x - 1 = 63 => 2x = 64 => x = 6
KL :......
Ta có:2n(2m-n-1)=64.31
=>2n=64
=>2n=26=> n=6
n=6 ta có:2m-n-1=31
=> 2m-n=32=> 2m-6=25
=> m-6=5=> m=6+5=11
vậy m=11 , n=6
#hoctot#
\(2^m+2^n=2^{m+n}\Rightarrow\frac{2^m+2^n}{2^m.2^n}=1\Leftrightarrow\frac{1}{2^m}+\frac{1}{2^n}=1\)
Nếu m=0 thì \(\frac{1}{2^m}+\frac{1}{2^n}=\frac{1}{2^0}+\frac{1}{2^n}>1\)
Nếu m=1 thì \(\frac{1}{2^m}+\frac{1}{2^n}=\frac{1}{2}+\frac{1}{2^n}=1\Rightarrow n=1\)
Nếu m>1 thì \(\frac{1}{2^m}< \frac{1}{2}\Rightarrow\frac{1}{2^n}>\frac{1}{2}\Rightarrow n=0\Rightarrow\frac{1}{2^m}+1=1\left(wrong\right)\)
Vậy m=1;n=0 và n=1;m=0
Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9
Ta có M = 1 + 2 + ..........+ 2^49
2M = 2 + 2^2 +.........+ 2^50
2M - M = (2 +2^2+.............+2^50) -(1 +2+.............+ 2^49)
M = 2^50 - 1
Mà M +1 = 2^n
<=> (2^50-1) +1 = 2^n
<=> 2^50 = 2^n
=> n = 50
Chúc bạn học tốt
A=3+32+33+...+32016
3A=32+33+34+...+32017
3A-A=(32+33+34+...+32017)-(3+32+33+...+32016)
2A=32017-3
=>2A+3=32017-3+3=32017
=>32017=3n
=>n=2017
Ta có: \(2016=2^5.3^2.7\), \(2^m>2016\Rightarrow m>5\)
\(\Rightarrow2^m⋮2^5\Rightarrow2^n⋮2^5\)
suy ra \(2^m-2^n=2^5\left(2^{m-5}-2^{n-5}\right)=2^5.3^2.7\)
\(\Rightarrow2^{m-5}-2^{n-5}=3^2.7\)
Có VP là số lẻ nên VT cũng là số lẻ suy ra \(2^{n-5}=1\Leftrightarrow n=5\)
\(2^m=2016+2^5=2048=2^{11}\Rightarrow m=11\).
Vậy \(\left(m,n\right)=\left(11,5\right)\).
VP và VT là gì vậy ạ